Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

RMD Principal Investigator: Michael R. Squillante
DOE Technical Contact: Michelle D. Shinn
RMD Team: Josh Tower, Huicong Hong
MIT: Lindley Winslow, Joe Johnston

August 14, 2020
RMD Basic and Applied Research and Development

Materials Science

- Scintillators
- Semiconductors
- X-ray Imaging Screens
- Ceramic Lasers and IR windows

Sensors

- APDs SSPMs
- Photosensors
- Wide Band Gap Geiger Photodiodes
- Surgical Beta-Probe

Instruments & Systems

- HiRIS – High Resolution Imaging System
- RadEye Detectors
- Hermes G/n w/ isotope ID
- Robotic nuclear power plant concrete analyzer

RMD Basic and Applied Research and Development

A Dynasil Company
RMD Commercial Products

3” CLYC Crystals CLYC Pillars

Thermo-Scientific

Scintillation detectors

INL Neutron Imaging System

Zetec ECT power plant probe
Understanding the Neutrino

• A key goal of Nuclear Physics is elucidating the nature of the neutrino
 What are the masses of the neutrino mass eigenstates?
 Is the neutrino its own antiparticle, and thus a Majorana particle?
• The question of the Majorana nature of neutrinos is one of the most important
 questions in physics today
• If the neutrino is a Majorana particle, the neutrino is responsible for the
 matter-antimatter asymmetry we observe in the universe.
• Searching for neutrinoless double beta decay (0νββ) one of the highest priority
 experiments to answer this question
• One such experiment is CUORE: Cryogenic Underground Observatory for Rare
 Events. CUORE uses 1 ton TeO$_2$ bolometers
• The next generation experiment will be CUPID: CUORE with Particle
 Identification. CUPID will use scintillating bolometers
Phase IIA Technical Objectives

The goal is to complete the research and development needed to implement production of Li$_2$MoO$_4$ (LMO) scintillating bolometer crystals suitable for neutrinoless double-beta decay experiments.

- Synthesize Li$_2$MoO$_4$ from the high purity raw materials
- Purify the Li$_2$MoO$_4$ further by zone refining to improve the radioactive background
- Grow single-crystal ingots using Czochralski for fabricating 200 – 250 gm detectors
- Develop processes for shaping and polishing crystals that maintain radio-purity
- Deliver detector crystals to MIT for cryogenic evaluation. Scintillating bolometer testing will include all operational characteristics, such as light output and radioactivity background.
- Demonstrate suitability for the CUPID neutrinoless double-beta decay experiment
- Grow LMO using isotope enriched 100Mo and produce full-spec detectors to qualify as a supplier for the CUPID experiment.
Selection of Isotopes with Double-beta decay

Candidate Isotopes for 0νββ Experiments

<table>
<thead>
<tr>
<th>element</th>
<th>isotope</th>
<th>end point energy (MeV)</th>
<th>% abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>48</td>
<td>4.271</td>
<td>.187</td>
</tr>
<tr>
<td>Nd</td>
<td>150</td>
<td>3.367</td>
<td>5.6</td>
</tr>
<tr>
<td>Zr</td>
<td>96</td>
<td>3.35</td>
<td>2.8</td>
</tr>
<tr>
<td>Mo</td>
<td>100</td>
<td>3.034</td>
<td>9.7</td>
</tr>
<tr>
<td>Se</td>
<td>82</td>
<td>2.995</td>
<td>8.8</td>
</tr>
<tr>
<td>Cd</td>
<td>116</td>
<td>2.802</td>
<td>7.5</td>
</tr>
<tr>
<td>Te</td>
<td>130</td>
<td>2.527</td>
<td>24.6</td>
</tr>
<tr>
<td>Xe</td>
<td>136</td>
<td>2.457</td>
<td>8.9</td>
</tr>
<tr>
<td>Ge</td>
<td>76</td>
<td>2.039</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Requirements for isotope
1. Must decay by double beta process.
2. Good natural abundance and ability to enrich.
3. High endpoint energy (above 2.6 MeV 232Th gamma ray).
4. Major constituent in a scintillating crystal.

100Mo half-life = 7.8$\times 10^{18}$ y
82Se half-life = 0.97$\times 10^{20}$ y

Scintillating Bolometers are needed for better particle discrimination and background reduction in next generation experiments.
Li₂MoO₄ (LMO) Synthesis

1. MoO₃ 99.9995% + Li₂CO₃ 99.99% high purity powders
 \[\text{MoO}_3 + \text{Li}_2\text{CO}_3 \rightarrow \text{Li}_2\text{MoO}_4 + \text{CO}_2 \]

2. Mix powders in a plastic mixing bottle overnight on a roller

3. Press the mixture in a Teflon piston jig with a cold press to form a compact and dense mixture puck

4. Place and melt the puck inside a platinum crucible at 650°C

5. Repeat steps 1-4 until crucible is sufficiently full
LMO Purification

• Start with good purity raw materials
 – Good sources identified in previous phase
 – Decent purity achieved without further purification

• Evaluating zone refining
 – Trying different crucible materials (Pt, carbonized quartz, etc.)

• MoO$_3$ (99.9995%) + Li$_2$CO$_3$ (99.99%) High Purity Powders

Greenish or brownish crystals can result if best purity materials are not used.
Czochralski Growth of Li$_2$MoO$_4$

Congruent growth for Li$_2$MoO$_4$

No structural phase change for Li$_2$MoO$_4$

30 x 30 x 20 mm sample used for cryogenic testing

Optical Transmission of Li$_2$MoO$_4$ G5-Top Crystal
Cryogenic Testing of Scintillating Bolometers

Above ground cryogenic testing by MIT at CSNSM

- Samples held at ~ 20 mK for multi-day testing.
- Light and heat pulses measured separately.
Mean light and heat pulses from LMO

Light pulse is \(\sim 100\times \) faster than heat.
Light versus Heat Chart for LMO

- 5 days background measurement
- Temperature stable 20 mK +/- 0.1 mK

Good separation of alphas!

Energy spectrum
Calibrated Heat Spectrum for LMO

- Baseline FWHM: 10.4 keV
- Sensitivity: 11 nv/keV

Calibrated Spectrum

Gamma peaks from U-238 chain
LMO Light Channel Spectrum

Light Channel Spectrum

- FWHM Baseline Resolution: 0.81 keV
- Sensitivity: 1.1 uV/keV
- Light Yield ~ 0.5 keV/MeV

Calibrated with muon background
Alpha Particle Discrimination

Alpha Particle Discrimination Power = 3.0

\[DP = \frac{|\mu_1 - \mu_2|}{\sqrt{\sigma_1^2 + \sigma_2^2}} \]

\[DP = \frac{0.520 - 0.145}{\sqrt{0.682^2 + 0.104^2}} \]

\[DP = 3.0 \]
LMO Internal Alpha Background Limits

Alpha Contamination: Limits are 0.08 to 0.3 mBq/kg
– Comparable to the CLYMENE crystal

Alpha Contamination Limits

<table>
<thead>
<tr>
<th>Chain/Contamination</th>
<th>Nuclide</th>
<th>Q-Value (keV)</th>
<th>Counts</th>
<th>Limit on Activity (mBq/kg)</th>
<th>CLYMENE LMO-Small (mBq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-232</td>
<td>Th-232</td>
<td>4081.6 ± 1.4</td>
<td>5</td>
<td><0.24</td>
<td><0.5</td>
</tr>
<tr>
<td>Th-228</td>
<td>Th-228</td>
<td>5520.08 ± 0.22</td>
<td>8</td>
<td><0.10</td>
<td><0.55</td>
</tr>
<tr>
<td>U-238</td>
<td>U-238</td>
<td>4269.7 ± 2.9</td>
<td>9</td>
<td><0.12</td>
<td><0.72</td>
</tr>
<tr>
<td>Ra-226</td>
<td>Ra-226</td>
<td>4870.62 ± 0.25</td>
<td>-</td>
<td><0.21</td>
<td><0.50</td>
</tr>
<tr>
<td>Rn-222</td>
<td>Rn-222</td>
<td>5590.4</td>
<td>13</td>
<td><0.21</td>
<td>-</td>
</tr>
<tr>
<td>Po-218</td>
<td>Po-218</td>
<td>6002.4</td>
<td>7</td>
<td><0.08</td>
<td>-</td>
</tr>
<tr>
<td>Po-210</td>
<td>Po-210</td>
<td>5407.45 ± 0.07</td>
<td>8</td>
<td><0.10</td>
<td><1.7</td>
</tr>
<tr>
<td>Pt-190</td>
<td>Pt-190</td>
<td>3252 ± 6</td>
<td>15</td>
<td><0.25</td>
<td>-</td>
</tr>
</tbody>
</table>

- Feldman-Cousins tables are used to set 90% limits
- Count limits are converted to activity limits with the exposure of 0.22 kg*days
- Ra-226 limit is set by assuming secular equilibrium with Rn-222
- Comparison is to CLYMENE (Exposure 0.039 kg*days)
- Accounting for different exposures, the two sets of limits are comparable (arXiv:1801.07909 [physics.ins-det])
Manufacturing Plan

Supply of 100Mo

- The molybdenum, supplied as 100MoO$_3$ powder, will be purchased from ISOFlex in a quantity sufficient for the prototype objective of the Phase IIA project.
- The enriched 100MoO$_3$ is by far the most expensive component of the LMO detectors planned for CUPID, at approximately $69,000 per kg for the 100Mo.
- There is a choice of 1 or 2 stages of centrifugation.
- The 2-stage centrifugation cost more but has significantly better purity and will be utilized for this project.

Production Schedule

- The required shape size and delivery schedule for LMO crystals to meet the US contribution to CUPID.
- 600 crystal cubes 4.5 cm on a side by 2025. We plan to begin delivering crystals to CUPID in 2022.
- One Czochralski crystal puller can produce up to 100 crystals per year.
- Three pullers will be needed to complete the delivery on time.
Purity of Enriched 100Mo from ISOFlex

1 stage of centrifugation

<table>
<thead>
<tr>
<th>Element</th>
<th>Permissible Abundance</th>
<th>Element</th>
<th>Permissible Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238</td>
<td><0.01 ppm</td>
<td>Co</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Th-232</td>
<td><0.01 ppm</td>
<td>Cu</td>
<td><30 ppm</td>
</tr>
<tr>
<td>W</td>
<td>>1000 ppm*</td>
<td>Zr</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Sr</td>
<td><30 ppm</td>
<td>Zr</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Ba</td>
<td><30 ppm</td>
<td>Nb</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Si</td>
<td><50 ppm</td>
<td>Cd</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Al</td>
<td><30 ppm</td>
<td>Sn</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Sc</td>
<td><30 ppm</td>
<td>Sb</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Ti</td>
<td><30 ppm</td>
<td>Hf</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Cr</td>
<td><30 ppm</td>
<td>Ta</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Mn</td>
<td><30 ppm</td>
<td>Pb</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Fe</td>
<td><30 ppm</td>
<td>Bi</td>
<td><30 ppm</td>
</tr>
<tr>
<td>Ni</td>
<td><30 ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 stages of centrifugation

<table>
<thead>
<tr>
<th>Element</th>
<th>Permissible Abundance</th>
<th>Element</th>
<th>Permissible Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238</td>
<td><0.01 ppm</td>
<td>Ni</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Th-232</td>
<td><0.001 ppm**</td>
<td>Co</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Ra-226</td>
<td><10 mBq/kg *</td>
<td>Cu</td>
<td><5 ppm</td>
</tr>
<tr>
<td>W</td>
<td><50 ppm</td>
<td>Zn</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Sr</td>
<td><5 ppm</td>
<td>Zr</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Ba</td>
<td><5 ppm</td>
<td>Nb</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Si</td>
<td><15 ppm</td>
<td>Cd</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Al</td>
<td><10 ppm</td>
<td>Sn</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Sc</td>
<td><5 ppm</td>
<td>Sb</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Ti</td>
<td><5 ppm</td>
<td>Hf</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Cr</td>
<td><5 ppm</td>
<td>Ta</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Mn</td>
<td><5 ppm</td>
<td>Pb</td>
<td><5 ppm</td>
</tr>
<tr>
<td>Fe</td>
<td><5 ppm</td>
<td>Bi</td>
<td><5 ppm</td>
</tr>
</tbody>
</table>
Summary and Plans for the Remainder of Phase IIA

We will continue follow the original plan described in the proposal.

- Scale up the crystal growth to 3” diameter by 3” long
- Optimize purification methods, especially for MoO$_3$
- Continue to provide crystal samples to MIT for cryogenic evaluation.
- Incorporate enriched 100Mo and produce a prototype detector crystal fully suitable for CUPID.
- Finalize and document the production process
- Produce full size crystals and transition to Phase III production