

Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

August 14, 2020

DOE Contract: DE-SC0015200 SBIR Phase IIA 5/28/2019 - 5/27/2021

RMD Principal Investigator: Michael R. Squillante DOE Technical Contact: Michelle D. Shinn RMD Team: Josh Tower, Huicong Hong MIT: Lindley Winslow, Joe Johnston

RMD Basic and Applied Research and Development

Materials Science

Scintillators

Semiconductors

X-ray Imaging Screens

Ceramic Lasers and IR windows

Sensors

APDs SSPMs Photosensors

Wide Band Gap Geiger Photodiodes

Surgical Beta-Probe

Instruments & Systems

RadEye Detectors

Hermes G/n w/ isotope ID

Robotic nuclear power plant concrete analyzer

RMD Commercial Products

3" CLYC Crystals CLYC Pillars

Scintillation detectors

INL Neutron Imaging System

Zetec ECT power plant probe

Thermo-Scientific

- A key goal of Nuclear Physics is elucidating the nature of the neutrino What are the masses of the neutrino mass eigenstates?
 Is the neutrino its own antiparticle, and thus a Majorana particle?
- The question of the Majorana nature of neutrinos is one of the most important questions in physics today
- If the neutrino is a Majorana particle, the neutrino is responsible for the matter-antimatter asymmetry we observe in the universe.
- Searching for neutrinoless double beta decay (0vββ) one of the highest priority experiments to answer this question
- One such experiment is CUORE: Cryogenic Underground Observatory for Rare Events. CUORE uses 1 ton TeO₂ bolometers
- The next generation experiment will be CUPID: CUORE with Particle Identification. CUPID will use scintillating bolometers

Phase IIA Technical Objectives

The goal is to complete the research and development needed to implement production of Li_2MoO_4 (LMO) scintillating bolometer crystals suitable for neutrinoless double-beta decay experiments.

- Synthesize Li₂MoO₄ from the high purity raw materials
- Purify the Li₂MoO₄ further by zone refining to improve the radioactive background
- Grow single-crystal ingots using Czochralski for fabricating 200 250 gm detectors
- Develop processes for shaping and polishing crystals that maintain radio-purity
- Deliver detector crystals to MIT for cryogenic evaluation. Scintillating bolometer testing will include all operational characteristics, such as light output and radioactivity background.
- Demonstrate suitability for the CUPID neutrinoless double-beta decay experiment
- Grow LMO using isotope enriched ¹⁰⁰Mo and produce full-spec detectors to qualify as a supplier for the CUPID experiment.

Selection of Isotopes with Double-beta decay

Candidate Isotopes for 0vββ Experiments

			0/	
		ena point	%	
element	isotope	energy (MeV)	abundance	
Са	48	4.271	.187	
Nd	150	3.367	5.6	
Zr	96	3.35	2.8	
Мо	100	3.034	9.7	
Se	82	2.995	8.8	
Cd	116	2.802	7.5	
Те	130	2.527	24.6	
Xe	136	2.457	8.9	
Ge	76	2.039	7.8	

 100 Mo half-life = 7.8×10¹⁸ y 82 Se half-life = 0.97×10²⁰ y

Requirements for isotope

- 1. Must decay by double beta process.
- 2. Good natural abundance and ability to enrich.
- High endpoint energy (above 2.6 MeV ²³²Th gamma ray).
- 4. Major constituent in a scintillating crystal.

Scintillating Bolometers are needed for better particle discrimination and background reduction in next generation experiments.

Li₂MoO₄ (LMO) Synthesis

- 1. $MoO_3 99.9995\% + Li_2CO_3 99.99\%$ high purity powders - $MoO_3 + Li_2CO_3 \rightarrow Li_2MoO_4 + CO_2$
- 2. Mix powders in a plastic mixing bottle overnight on a roller
- 3. Press the mixture in a Teflon piston jig with a cold press to form a compact and dense mixture puck
- 4. Place and melt the puck inside a platinum crucible at 650C
- 5. Repeat steps 1-4 until crucible is sufficiently full

Cold Press

Puck melted in Pt crucible

LMO Purification

- Start with good purity raw materials
 - Good sources identified in previous phase
 - Decent purity achieved without further purification
- Evaluating zone refining
 - Trying different crucible materials (Pt, carbonized quartz, etc.)
- MoO₃ (99.9995%) + Li₂CO₃ (99.99%) High Purity Powders

Greenish or brownish crystals can result if best purity materials are not used.

Czochralski Growth of Li₂MoO₄

Solodovnikov et al., Russ. J. Inorg. Chem., Vol. 44, No. 6 1999

A Dynasil Company

9

Cryogenic Testing of Scintillating Bolometers

Above ground cryogenic testing by MIT at CSNSM

- Samples held at ~ 20 mK for multi-day testing.
- Light and heat pulses measured separately.

Light pulse is \sim 100x faster than heat.

Calibrated Heat Spectrum for LMO

LMO Light Channel Spectrum

Light Channel Spectrum

Alpha Particle Discrimination Power = 3.0

LMO Internal Alpha Background Limits

Alpha Contamination: Limits are 0.08 to 0.3 mBq/kg – Comparable to the CLYMENE crystal

Alpha Contamination Limits

Chain/ Contamin ation	Nuclide	Q-Value (keV)	Counts	Limit on Activity (mBq/kg)	CLYMENE LMO-Small (mBq/kg)
Th-232	Th-232	4081.6 ± 1.4	5	<0.24	<0.5
	Th-228	5520.08 ± 0.22	8	<0.10	<0.55
U-238	U-238	4269.7 ± 2.9	9	<0.12	<0.72
	Ra-226	4870.62 ± 0.25	-	<0.21	<0.50
	Rn-222	5590.4	13	<0.21	-
	Po-218	6002.4	7	<0.08	-
	Po-210	5407.45 ± 0.07	8	<0.10	<1.7
Pt-190	Pt-190	3252 ± 6	15	<0.25	-

- · Feldman-Cousins tables are used to set 90% limits
- · Count limits are converted to activity limits with the exposure of 0.22 kg*days
- Ra-226 limit is set by assuming secular equilibrium with Rn-222
- Comparison is to CLYMENE (Exposure 0.039 kg*days)
- Accounting for different exposures, the two sets of limits are comparable (arXiv:1801.07909 [physics.ins-det])

Manufacturing Plan

Supply of ¹⁰⁰Mo

- The molybdenum, supplied as ¹⁰⁰MoO3 powder, will be purchased from ISOFlex in a quantity sufficient for the prototype objective of the Phase IIA project
- The enriched ¹⁰⁰MoO3 is by the far the most expensive component of the LMO detectors planned for CUPID, at approximately \$69,000 per kg for the ¹⁰⁰Mo
- There is a choice of 1 or 2 stages of centrifugation
- The 2-stage centrifugation cost more but has significantly better purity and will be utilized for this project

Production Schedule

- The required shape size and delivery schedule for LMO crystals to meet the US contribution to CUPID
- 600 crystal cubes 4.5 cm on a side by 2025. We plan to begin delivering crystals to CUPID in 2022
- One Czochralski crystal puller can produce up to 100 crystals per year
- Three pullers will be needed to complete the delivery on time

1 stage of centrifugation

2 stages of centrifugation

Element	Permissible	Element	Permissible	Element	Permissible	Element	Permissible
	Abundance		Abundance		Abundance		Abundance
U-238	<0.01 ppm	Со	<30 ppm	U-238	<0.001 ppm**	Ni	<5 ppm
Th-232	<0.01 ppm	Cu	<30 ppm	Th-232	<0.001 ppm**	Со	<5 ppm
W	>1000 ppm*	Zn	<30 ppm	Ra-226	< 10 mBq/kg *	Cu	<5 ppm
Sr	<30 ppm	Zr	<30 ppm	W	<50 ppm	Zn	<5 ppm
Ва	<30 ppm	Nb	<30 ppm	Sr	<5 ppm	Zr	<5 ppm
Si	<50 ppm	Cd	<30 ppm	Ва	<5 ppm	Nb	<5 ppm
Al	<30 ppm	Sn	<30 ppm	Si	<15 ppm	Cd	<5 ppm
Sc	<30 ppm	Sb	<30 ppm	Al	<10 ppm	Sn	<5 ppm
Ti	<30 ppm	Hf	<30 ppm	Sc	<5 ppm	Sb	<5 ppm
Cr	<30 ppm	Та	<30 ppm	Ti	<5 ppm	Hf	<5 ppm
Mn	<30 ppm	Pb	<30 ppm	Cr	<5 ppm	Та	<5 ppm
Fe	<30 ppm	Bi	<30 ppm	Mn	<5 ppm	Pb	<5 ppm
Ni	<30 ppm			Fe	<5 ppm	Bi	<5 ppm

We will continue follow the original plan described in the proposal.

- Scale up the crystal growth to 3" diameter by 3" long
- Optimize purification methods, especially for MoO₃
- Continue to provide crystal samples to MIT for cryogenic evaluation.
- Incorporate enriched ¹⁰⁰Mo and produce a prototype detector crystal fully suitable for CUPID.
- Finalize and document the production process
- Produce full size crystals and transition to Phase III production

