Design and Fabrication of the ASoC

August 13th, 2020
Isar Mostafanezhad, Ph.D.
CEO and Founder of Nalu Scientific LLC

Grant: DE-SC0015231- SBIR Phase II
4/10/2017- 4/09/2019, NCE 1/30/2020
PRESENTATION SUMMARY

TOPICS COVERED:

- About Nalu Scientific
- Background on NP/HEP experiment needs
- ASoC Project
- Synergies
- Commercialization Efforts
- Next Steps
ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, HI
Located at the Manoa Innovation Center

Integrated Circuits Design
Analog + digital System-on-Chip (SoC)
Digital implementation

Hardware Design
Field Programmable Gate Arrays (FPGA)
Complex multi-layer Printed Circuit Board (PCBs)

Expertise in:
Fast timing
Radiation detection
Readout electronics for Particle Physics
WAVEFORM DIGITIZER SoCs
FOR SINGLE PHOTON TIME OF FLIGHT DETECTION

1. Front-end Chips:
- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly

2. Integration:
- SiPM
- PMT
- LAPPD
- Detector arrays

3a. Main application:
- NP/HEP experiments
- Astro particle physics

3b. Other applications:
- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging
WHERE WE STARTED

A Search for New Physics – The Belle II Experiment

Tsubuka City
Located 60 mi north of Tokyo

High Energy Accelerator Research Facility (KEK)
in Tsukuba

Interaction point inside the electron/positron collider
Belle II: e+ e- experiment at 40x luminosity of Belle -> Detector needs to operate at severe beam background

HISTORY OF BELLE II

Belle II Upgrade is a 26+ Country, 900 Member Collaboration
LESSON ONE

HOW DOES A NP EXPERIMENT WORK?

Next gen Particle Physics electronics need to be:
- Radiation hard
- High performance
- Accommodate long trigger delay
- Low cost, low power
- User friendly

Solution: New System-on-Chip Integrated Circuit Design

Opportunity: Not many commercial options available

LESSON TWO

Proposed Solution (ASoC):
Chip level integration of switched capacitor array (analog) with digital processing.
ASoC V3 DESIGN DETAILS

Compact, high performance waveform digitizer

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

ASoC PARAMETERS	SPECIFICATION (MEASURED)
Sample rate | 2.5 - 3.6 GSa/s
Number of channels | 4
Sampling depth | 16 k Sa/channel
Signal range | 0-2.5 V
Resolution | 12 bits*, 10b ENOB
Supply Voltage | 2.5 V
RMS noise | ~ 1 mV
Digital Clock frequency | 25 MHz
Timing resolution | 1<25 ps***
Power /ch | 50-125 mW/channel*
Analog bandwidth | 950 MHz

Integration/features:
- Calibration memory on chip
- PLL on chip
- Isolate analog/digital voltage rings
- Increase number of channels
- Implement serial interface
- Feature extraction on chip
ASoC PHASE II SCHEDULE

3X ASoC revision proposed

3x fabricated

Test and characterization

Beta testing

<table>
<thead>
<tr>
<th>Deliverable Summary</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careful review of the final ASoC design and sending to low cost 250nm fabrication facility for tape-out.</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>Complete and full chip commercial grade design at Nalu Scientific</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>Design and implementation of the required PCBs and evaluation kits for immediate in-house testing of the ASoC, which will help after each tape-out</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>Characterize the ASoC by measuring electrical properties and limits of performance and create industry grade documents and datasheets</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>Repeat the 3 tape-out and design tweak/debug cycles until the final ASoC meets the desired performance</td>
<td>COMPLETE</td>
</tr>
</tbody>
</table>
ASoC V2 MEASUREMENTS

Live demo at IEEE NSS-MIC 2019

Timing resolution: 22ps

SiPM waveform readout

ROI Readout

No noise residuals after pedestal subtraction - typical ~2.5 counts = 1.0mV

Copyright © 2020 Nalu Scientific LLC. All rights reserved. SBIR data rights may apply. 2020 DOE NP Exchange Meeting.
PRESENTATION

SUMMARY

TOPICS COVERED:

1. SMA inputs
2. ASoC chip
3. FMC for FPGA card
ASoC Common Software and GUI
Next Steps for ASoC

- ASoC is now available:
 - Benchtop beta testing
 - Being designed into several detectors (~$200k follow on design contracts)
 - Trade studies for several experiments (~$30k follow on study contracts)
 - Power, data handling, readout rate
 - Integration issues, radiation hardness
- What we learned:
 - How to design, simulate, verify such a large chip
 - Deep knowledge of tools and PDKs
 - Interface with user community, early adopters and distributors
- What is next:
 - More testing under IRD and custom contracts
 - Core and parts of design library will live on in other chips (already cataloged)
 - Adapt testboard for feasibility tests in other areas
 - More targeted measurements
 - Rad testing
Current SoC-ASIC Projects
Open for business!

<table>
<thead>
<tr>
<th>Project</th>
<th>Sampling Frequency (GHz)</th>
<th>Input BW (GHz)</th>
<th>Buffer Length (Samples)</th>
<th>Number of Channels</th>
<th>Timing Resolution (ps)</th>
<th>Available Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASoC</td>
<td>3-5</td>
<td>0.8</td>
<td>16k</td>
<td>4</td>
<td>35</td>
<td>Rev 3 avail</td>
</tr>
<tr>
<td>HDSoC</td>
<td>1-3</td>
<td>0.6</td>
<td>4k</td>
<td>64</td>
<td>80-120</td>
<td>Feb’21</td>
</tr>
<tr>
<td>AARDVARC</td>
<td>8-14</td>
<td>2.5</td>
<td>32k</td>
<td>4-8</td>
<td>4-8</td>
<td>Rev 3 avail</td>
</tr>
<tr>
<td>AODS</td>
<td>1-2</td>
<td>1</td>
<td>8k</td>
<td>1-4</td>
<td>100-200</td>
<td>Rev 1 avail</td>
</tr>
</tbody>
</table>

- **ASoC**: Analog to digital converter System-on-Chip
- **HDSoC**: SiPM specialized readout chip with bias and control
- **AARDVARC**: Variable rate readout chip for fast timing and low deadtime
- **AODS**: Low density digitizer with High Dynamic Range (HDR) option

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.
Synergies

LAPPD

EIC-PID

Beam Diag.
Getting the Word Out

- Awards (40U40, most innovative, …)
- Attending conferences, trade shows, pitch competitions
- Media attention on restarting/diversifying economy in Hawaii esp post COVID
- New website, Social Media handles: FB, LinkedIn, Twitter
Acknowledgements

- US Department of Energy: PMs and staff
- University of Hawaii Department of Physics
- Hawaii Technology Development Corporation (HTDC)
- Incom
- Sandia National Lab
- Brookhaven National Lab
- Jefferson Lab