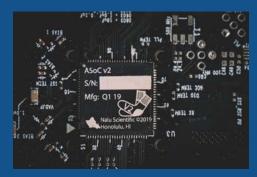
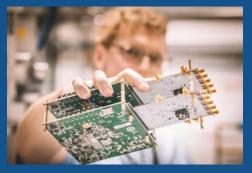
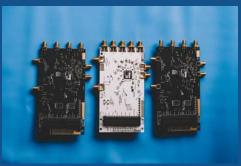


Design and Fabrication of the ASoC


August 13th, 2020 Isar Mostafanezhad, Ph.D. CEO and Founder of Nalu Scientific LLC


Grant: DE-SC0015231- SBIR Phase II 4/10/2017- 4/09/2019, NCE 1/30/2020


PRESENTATION SUMMARY

TOPICS COVERED:

- About Nalu Scientific
- Background on NP/HEP experiment needs
- ASoC Project
- Synergies
- Commercialization Efforts
- Next Steps

ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, HI Located at the Manoa Innovation Center

Integrated Circuits Design

Analog + digital System-on-Chip (SoC) Digital implementation

Hardware Design

Field Programmable Gate Arrays (FPGA) Complex multi-layer Printed Circuit Board (PCBs)

Expertise in:

Fast timing Radiation detection Readout electronics for Particle Physics

WAVEFORM DIGITIZER SoCs FOR SINGLE PHOTON TIME OF FLIGHT DETECTION

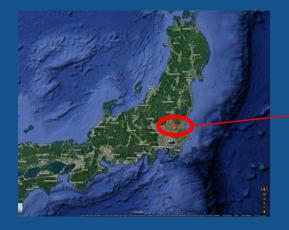
1. Front-end Chips:

- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly

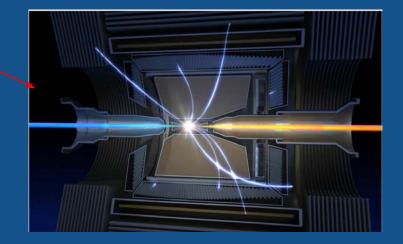
2. Integration:

- SiPM
- PMT
- LAPPD
- Detector arrays

3a. Main application:

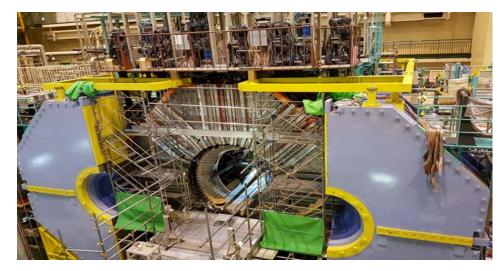

- NP/HEP experiments
- Astro particle physics

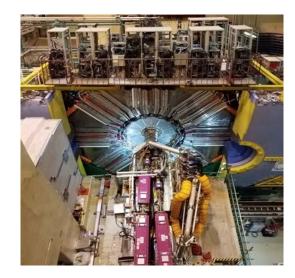
3b. Other applications:


- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

WHERE WE STARTED

A Search for New Physics – The Belle II Experiment

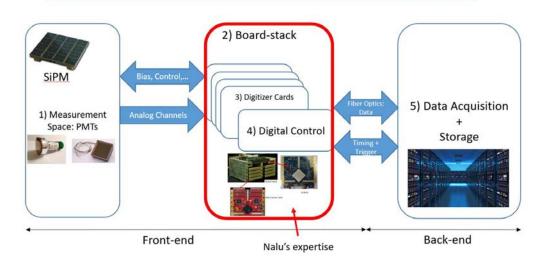

Tsubuka City Located 60 mi north of Tokyo High Energy Accelerator Research Facility (KEK) in Tsukuba



Interaction point inside the electron/positron collider

HISTORY OF BELLE II

Belle II Upgrade is a 26+ Country, 900 Member Collaboration


2015

2018

Belle II: e+ e- experiment at 40x luminosity of Belle -> Detector needs to operate at severe beam background

HOW DOES A NP EXPERIMENT WORK?

LESSON ONE

LESSON TWO

Next gen Particle Physics electronics need to be:

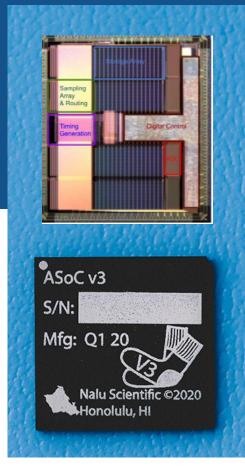
- Radiation hard
- High performance
- Accommodate long trigger delay
- Low cost, low power
- User friendly

Solution: New System-on-Chip Integrated Circuit Design

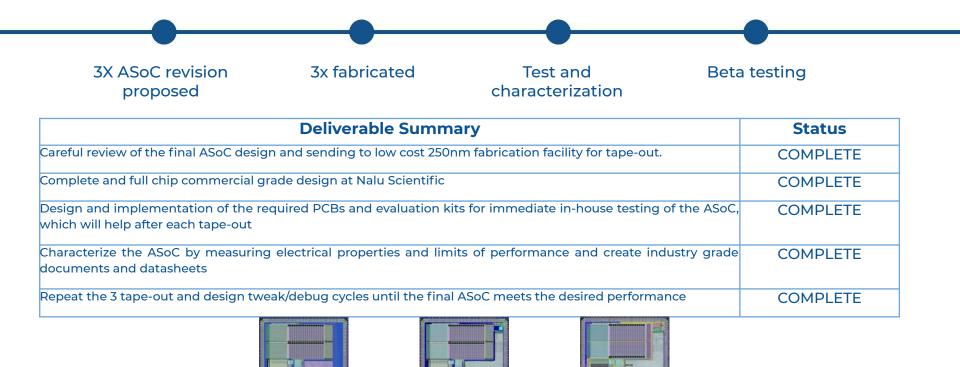
Opportunity: Not many commercial options available

Proposed Solution (ASoC) : Chip level integration of switched capacitor array (analog) with digital processing.

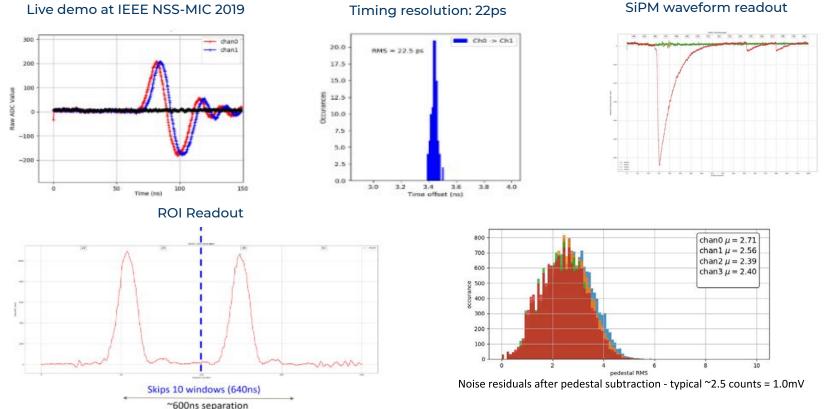
Copyright © 2020 Nalu Scientific LLC. All rights reserved. SBIR data rights may apply. 2020 DOE NP Exchange Meeting.


ASoC V3 DESIGN DETAILS

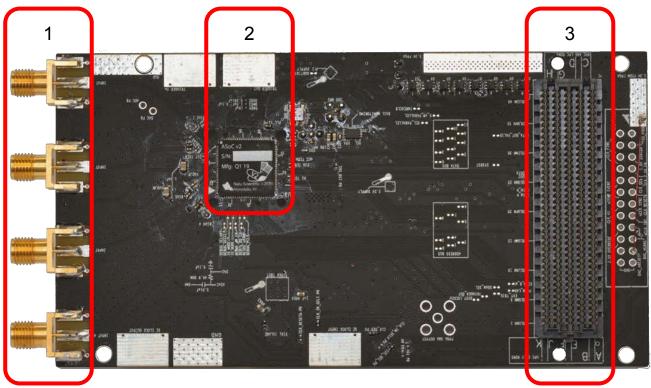
Compact, high performance waveform digitizer

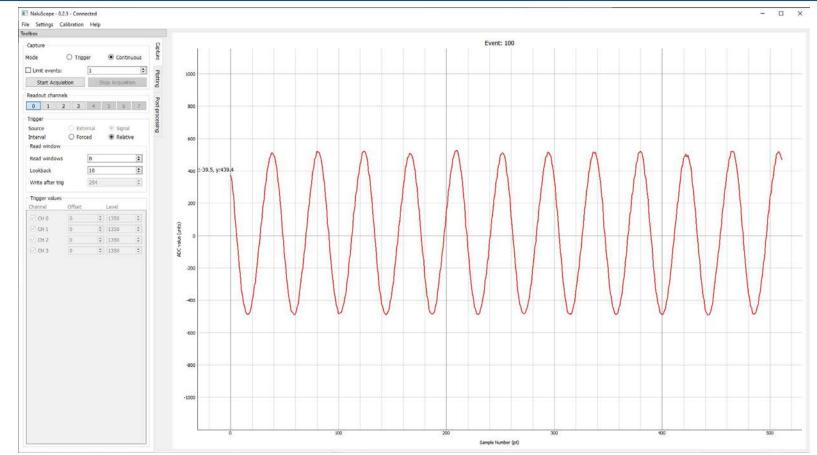

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

ASoC PARAMETERS	SPECIFICATION (MEASURED)
Sample rate	2.5 - 3.6 GSa/s
Number of channels	4
Sampling depth	16 k Sa/channel
Signal range	0-2.5 V
Resolution	12 bits*, 10b ENOB
Supply Voltage	2.5 V
RMS noise	~ 1 mV
Digital Clock frequency	25 MHz
Timing resolution	1<25 ps***
Power /ch	50-125 mW/channel*
Analog bandwidth	950 MHz

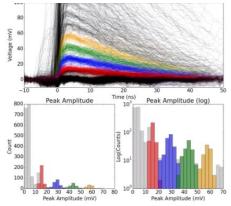

- Integration/features:
- Calibration memory on chip
- PLL on chip
- Isolate analog/digital voltage rings
- Increase number of channels
- Implement serial interface
- Feature extraction on chip

ASoC PHASE II SCHEDULE


ASoC V2 MEASUREMENTS


ASoC Eval Card

- 1. SMA inputs
- 2. ASoC chip
- 3. FMC for FPGA card


ASoC Common Software and GUI

NALU SCIENTIFIC - 2020 DOE NP Exchange Meeting. Copyright © 2020 Nalu Scientific LLC. All rights reserved.

Next Steps for ASoC

- •ASoC is now available:
 - $\circ\,$ Benchtop beta testing
 - $\circ\,$ Being designed into several detectors (~\$200k follow on design contracts)
 - \circ Trade studies for several experiments (~\$30k follow on study contracts)
 - Power, data handling, readout rate
 - Integration issues, radiation hardness
- •What we learned:
 - $\,\circ\,$ How to design, simulate, verify such a large chip
 - Deep knowledge of tools and PDKs
 - $\circ\,$ Interface with user community, early adopters and distributors
- •What is next:
 - $\circ\,$ More testing under IRD and custom contracts
 - $\circ\,$ Core and parts of design library will live on in other chips (already cataloged)
 - $\circ\,$ Adapt testboard for feasibility tests in other areas
 - More targeted measurements
 - Rad testing

Current SoC-ASIC Projects Open for business!

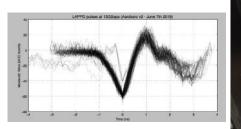
Project	Sampling Frequency (GHz)	lnput BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	4k	64	80-120	Feb'21
AARDVARC	8-14	2.5	32k	4-8	4-8	Rev 3 avail
AODS	1-2	1	8k	1-4	100-200	Rev 1 avail

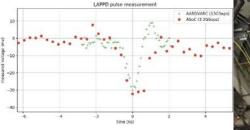
- ASoC: Analog to digital converter System-on-Chip
- HDSoC: SiPM specialized readout chip with bias and control
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
- AODS: Low density digitizer with High Dynamic Range (HDR) option

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

AARDVARC v1

MFG: Q2 1

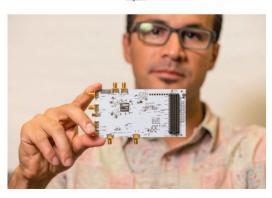

AODS v1 BV2


ASoC v3

Synergies

LAPPD

EIC-PID Bear


Beam Diag.

NALU SCIENTIFIC - 2020 DOE NP Exchange Meeting. Copyright © 2020 Nalu Scientific LLC. All rights reserved.

Getting the Word Out

•Awards (40U40, most innovative, ...)

- •Attending conferences, trade shows, pitch competitions
- •Media attention on restarting/diversifying economy in Hawaii esp post COVID
- •New website, Social Media handles: FB, LinkedIn, Twitter

Business

LEADERSHIP - APRIL 6, 2020

Virtual Interview on COVID-19: Isar Mostafanezhad, Founder and CEO, Nalu Scientific

IMS2019 - Boston

Acknowledgements

- •US Department of Energy: PMs and staff
- •University of Hawaii Department of Physics
- •Hawaii Technology Development Corporation (HTDC)
- Incom
- •Sandia National Lab
- •Brookhaven National Lab
- •Jefferson Lab

