

Multi-Channel Readout ASIC for Nuclear Physics Experiments

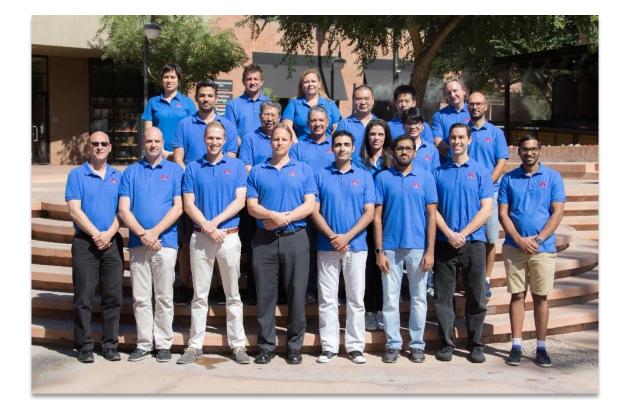
Presented by : Esko Mikkola (Principal Investigator)

DOE-NP SBIR/STTR Exchange Meeting August 14, 2019

Alphacore Inc. | www.alphacoreinc.com | Copyright ©2020 | PROPRIETARY | SBIR Data Rights

Outline

- Alphacore Overview
- Alphacore's DOE STTR Phase II Program Overview and Status (Year 2)
- Alphacore's High-Performance Digitizers for Nuclear Physics Experiments
- Summary


About Alphacore

- Founded in 2012 and located in Tempe, Arizona
- Product areas span:
 - High performance analog, mixed signal, and RF electronics
 - High-speed visible light and infrared camera systems
 - Radiation hard designs and radiation test services
 - Innovative devices ensuring supply chain and IoT cybersecurity

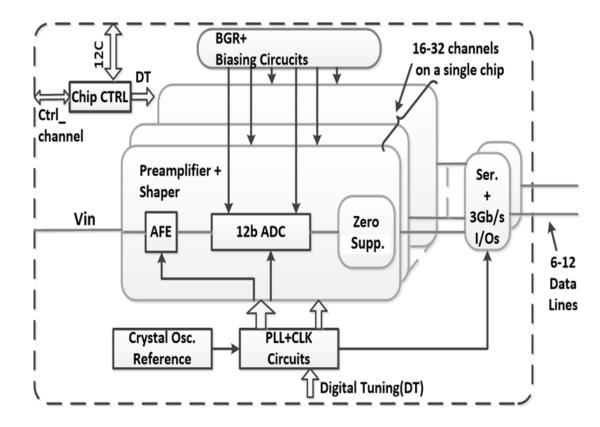
The Alphacore Team

Alphacore's team is a combination of business and engineering professionals with long histories of delivering products and services to customers who demand state-of-the-art performance.

Our team has had successful careers at companies ranging from start-ups to multinationals including **Raytheon**, **Texas Instruments**, **Analog Devices**, **Bell Labs**, **Intel**, **United Technologies**, and **Honeywell**.

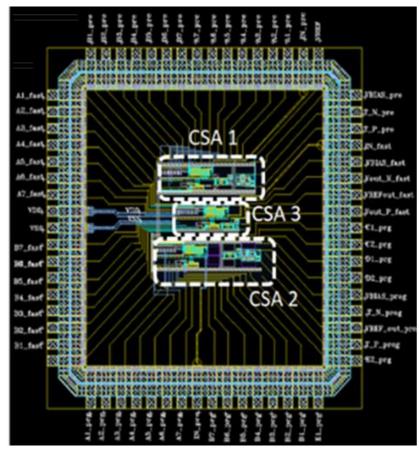
Current contracts with DOD (Air Force, Navy, Army, DARPA, MDA, DMEA), DOE, NASA, and NIST.

Multi-Channel Readout IC for Nuclear Physics Experiments


DOE STTR Phase II Year 2 Overview

Program Goals

• Program duration: 24 months

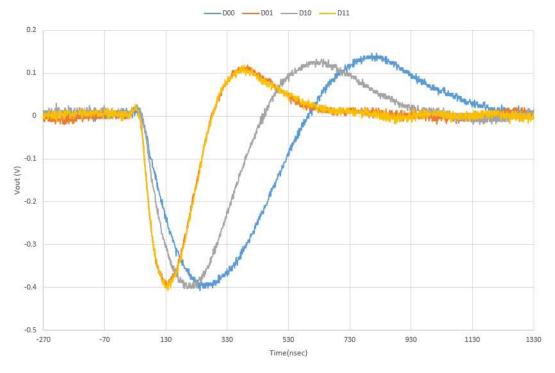

ALPHACORE

- Status: The funded technical period has ended
- STTR Partner: Arizona State University
- Key goal of this work is to develop versatile and low-cost detector readout solutions, both IP and ICs.
- The IP blocks can be used to relatively quickly build the exact, compact readout ASICs configurations most suitable for a target application when the need arises. Alphacore can build the exact ASIC for a customer in need using the tested IP.
- The Preamplifier and ADC ICs can be directly used for detector readout.
- Alphacore has taped out and tested the following circuits:
 - programmable, multi-channel preamplifier/shaper ICs (charge sensitive amplifiers)
 - multi-channel ADCs with varying specifications
 - I/O interface suitable for large data bandwidths

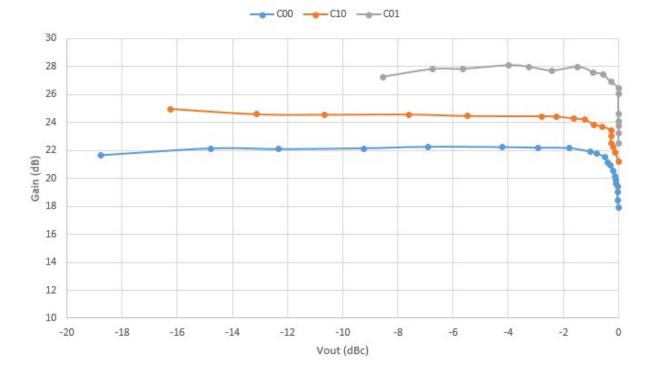
An example of a detector readout ASIC that can be built using Alphacore's IP blocks

Charge Sensitive Amplifiers (CSA)

Test chip for 3 CSAs


# Simulated specifications	CSA1 with programmability	CSA2	CSA3	
Equivalent Noise Charge(ENC) worst case (electrons)	556	1.8K	480	
ENC rate (electrons/pF)	22.25	negligible	22.25	
Rise Time typical (ns)	92	208	20	
Gain (mV/fC)	30.45	29.8	2.3	
Rise time programmability (ns)	50n-200	NA	NA	
Gain Programmability (mV/fC)	15-60	NA	NA	
Fully Differential Output	Yes	Yes	Yes	
Common Mode of Full Differential Output	0.8-1	0.8-1	0.8-1	
Shaper Circuit	Yes	Yes	No	

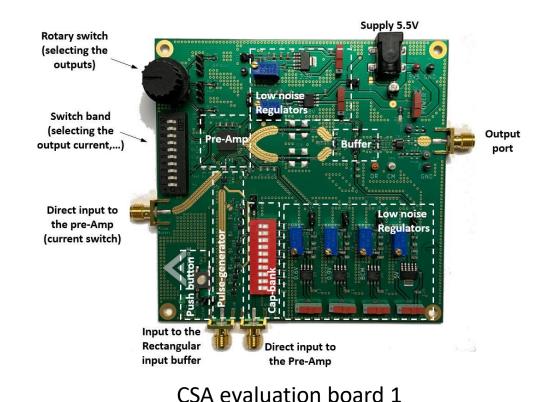
ALPHACORE

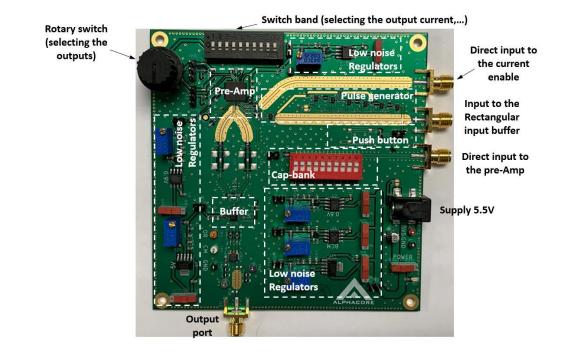


CSA1 Test Results

Noise was measured as 712 electrons for 0.7pF detector capacitance

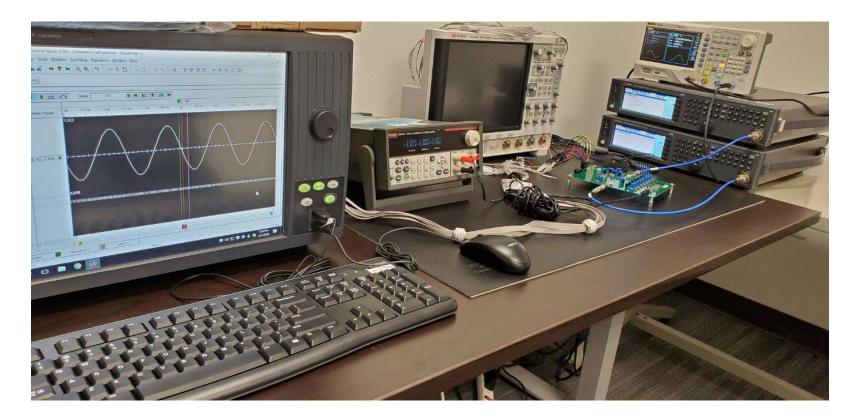
Shaping time programmability measurements



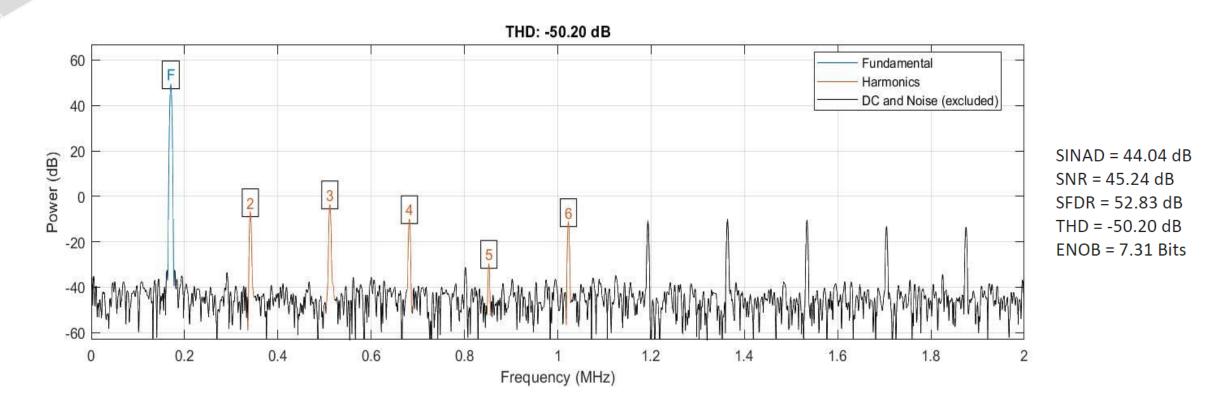

Gain programmability measurements

CSA Evaluation Boards

CSA evaluation boards and/or packaged chips are available for customers. 16-ch preamplifiers are available as bare die.



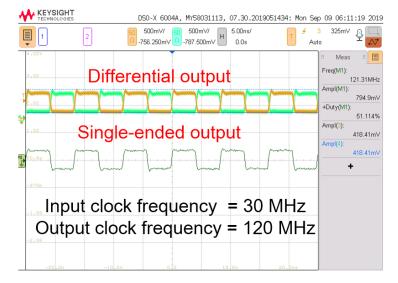
CSA evaluation board 2

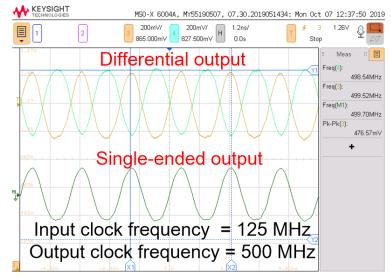


Analog to Digital Converters Test Results

ADC Test Setup

10-bit, 50MS/s, 7mW ADC Test Results



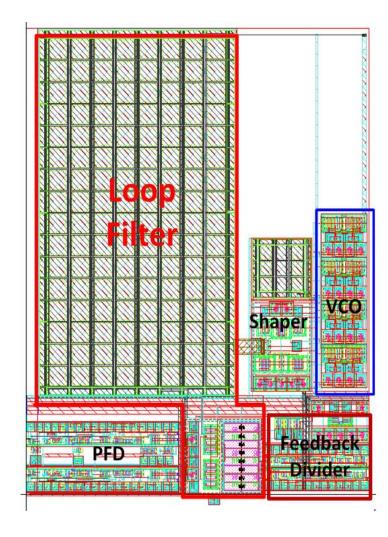

ADC test boards and/or packaged chips are available for customers. 6-ch ADCs are available as bare die.

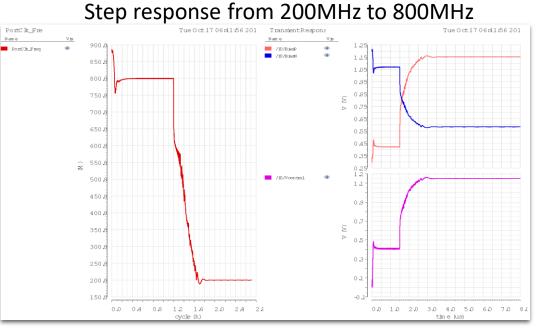
ALPHACORE

Low-power High-Bandwidth I/O Interface Test Results

DSD-X 6004A, MY58031113, 07.30.2019051434: Mon Sep 09 06:17:30 2019 5.00ns/ 500mV/ 500mV/ -756.250mV 0 -787.500mV 0.0s Auto Meas **Differential output** Erea(M1) 80.176MHz Ampl(M1 785.2m Duty(M 46.057% Ampl(3) Single-ended output 418.41mV 435.15m Input clock frequency = 20 MHz Output clock frequency = 80 MHz KEYSIGHT D50-X 6004A. MY58031113. 07.30.2019051434: Mon Sep 09 07:02:04 2019 500mV/ -756.250mV 0 -787.500mV 0.0s Meas **Differential output** Freq(M1): 401.08MHz 853.5m\ 54.60% Ampl(3) Single-ended output 435.15mV 435.15m + Input clock frequency = 100 MHz Output clock frequency = 400 MHz

ALPHACORE



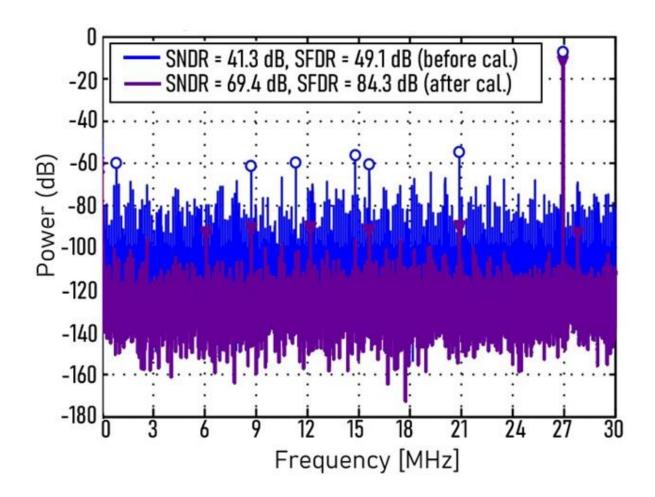

General Purpose PLL for Serializer Test Results

Alphacore's PLL

Output freq.
range: 80 to
800 MHz

Power at
1.8 V supply:
3.69 mW

A performance summary of Alphacore's PLL


Input Freq. (MHz)	Output Freq. (MHz)	Q· Lock time Phase noise		RMS jitter (ps)	Peak-to-peak Jitter(ps)	
50	200	2.3us	$-144.16 \mathrm{dBc/Hz}$ $@10 \mathrm{MHz}$	0.339	2.09502	
75	300	1.5us	-141.688dBc/Hz @10MHz	0.304	1.87872	
100	400	1.2us	-144.4679dBc/Hz @10MHz	0.178	1.10004	
125	500	980ns	-145.7717dBc/Hz @10MHz	0.134	0.82812	
150	600	880ns	-145.8564dBc/Hz @10MHz	0.119	0.73542	
200	800	420ns	-144.3804dBc/Hz @10MHz	0.113	0.69834	
Assume the Bi	t error ratio is 10	-3	-	-		

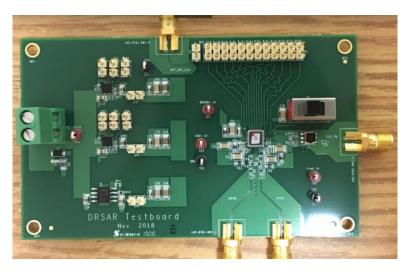
ROBUST HIGH-PERFORMANCE MICROELECTRONICS

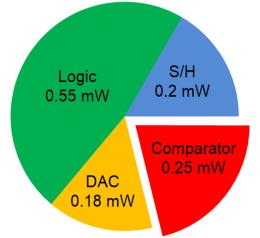
Silicon Evaluated High-Performance Digitizers for Nuclear Physics Experiments

12-bit, 50MS/s, 63mW ADC Test Results

ADC test boards and/or packaged chips are available for customers.

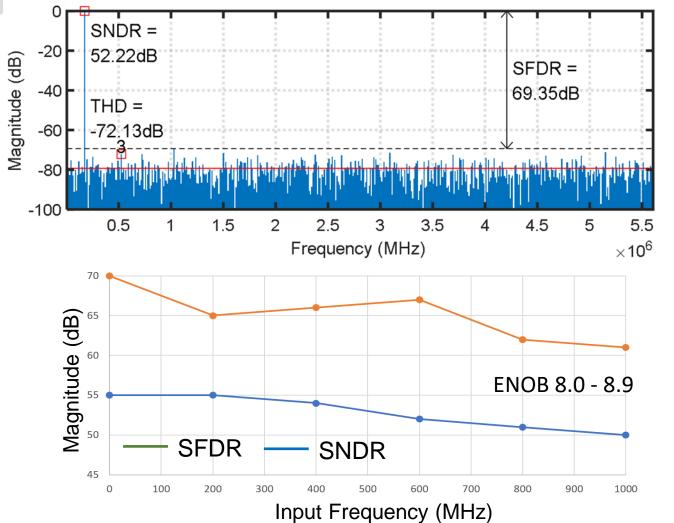
ALPHACORE



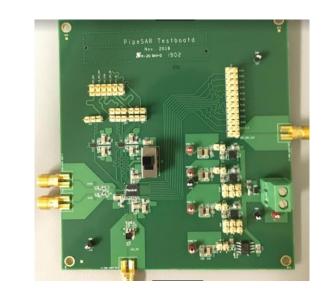

IP Library of 22nm and 28nm CMOS High-Performance Low-Power ADCs

- The library contains more than ten 300MS/s 20GS/s ADCs.
- They are radiation tolerant designs and available for nuclear physics experiments.
- The ADCs can be delivered with "full raw data stream output interface" and/or with "digital waveform sampling buffer" FIFO output interface. The much simpler FIFO interface is enough for most nuclear physics experiments and it enables very low power dissipation and simpler board design.
- Next slides show examples of the library elements.
- Please contact Alphacore for more details (test results, channel quantity, test boards, pricing...)

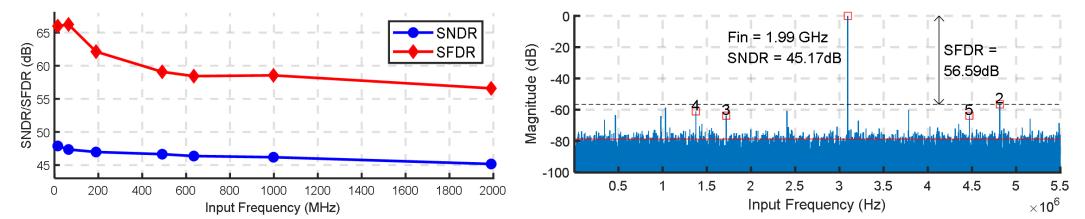
A 10B500M, 10bit, 500MS/s, Ultra Low Power ADC



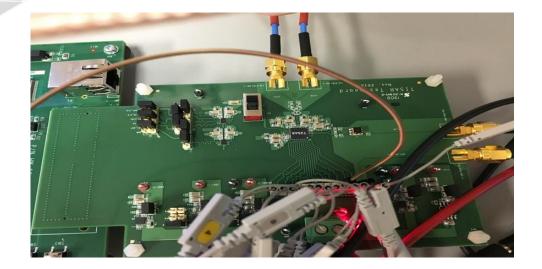
- Single channel ADC with wide input bandwidth (beyond 4th Nyquist zone)
- ENOB 8.0 8.9 over four Nyquist bands
- Ultra Low Power <1.18 mW (FOM <6.0fJ/conv.)
- Can be used as the unit channel in a 10-bit, time-interleaved ADC with sample rate of tens of GS/s

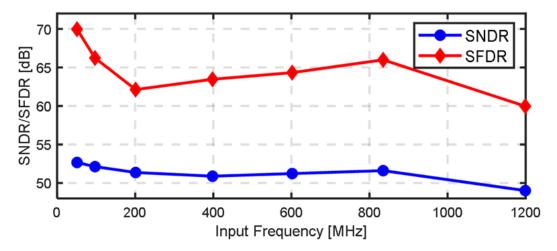

A 10B500M, 10bit, 500MS/s, Ultra Low Power ADC

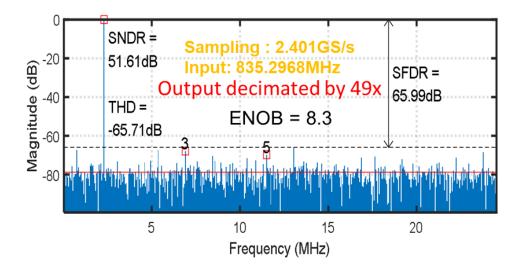
- Single channel ADC with wide input bandwidth (beyond 4th Nyquist zone)
- ENOB 8.0 8.9 over four Nyquist bands
- Ultra Low Power <1.18 mW (FOM <6.0fJ/conv.)
- Can be used as the unit channel in a 10-bit, time-interleaved ADC with sample rate of tens of GS/s



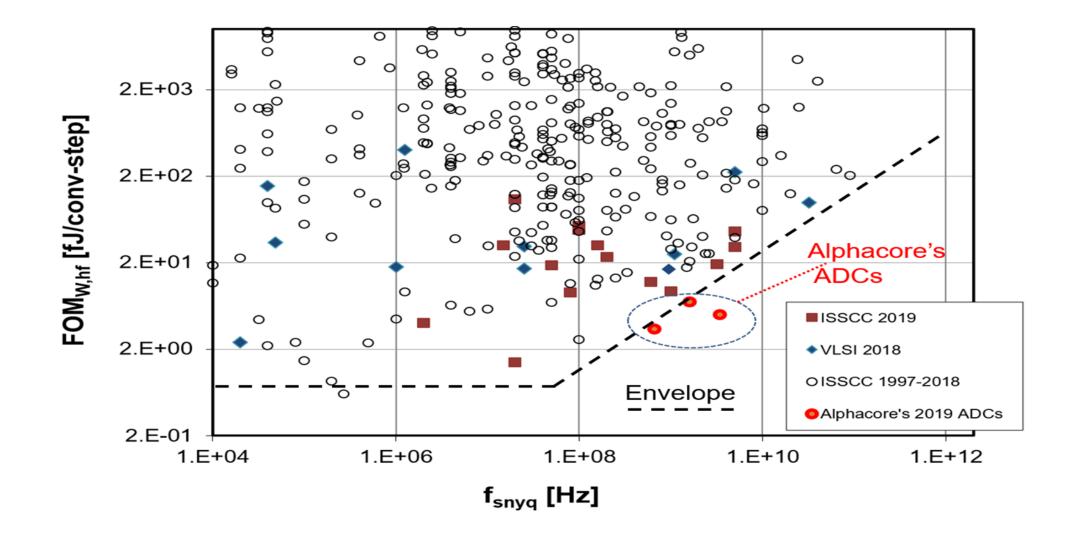
A9B1G, Wide Input BW, 9-bit, 1GS/s ADC


- Single channel with wide input bandwidth (beyond 4th Nyquist zone)
- ENOB stays within 7.2-7.7 over the first four Nyquist bands
- Power <2.1mW (FOM = 10fJ/conv)
- Can be used as the unit channel in a 10-bit, timeinterleaved ADC with sample rate of tens of GS/s

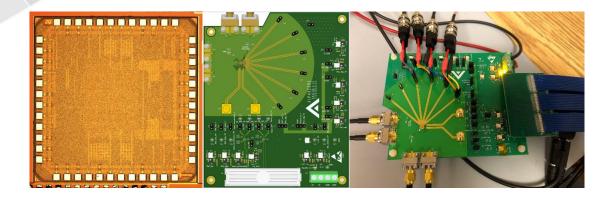

Output decimated by a factor of 91 in this testing set up

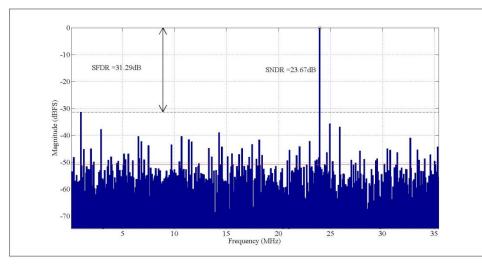


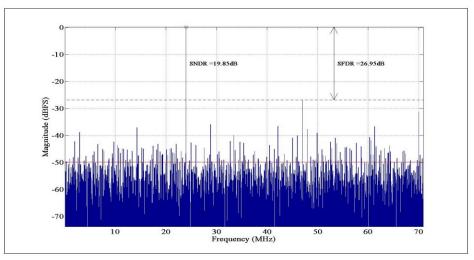
A10B2G, 10 bit, 2.4GS/s, Ultra Low Power ADC



- The ADC has a 8-way interleaved architecture, with combined sampling rate of 2.4GS/s. The sampling rate is limited by on-chip clock buffers. Optimized buffers would deliver up to 3.2GS/s with 6mW of additional power.
- We can interleave 16-way(on-chip) to achieve 6.4GS/s for continuous digitization with no dead time
- The developed calibration algorithm has been shown to be very effective for the calibration of interleaving spurs, in this case yielding SFDR of 60-70 dB and ENOB that varies from 7.9 bits to 8.5 bits in the first Nyquist band.
- Power = 6 mW (FOM = 6.9fJ/conv)




Alphacore's Ultra Low Power ADCs Walden Chart comparison: FOM vs Speed


20GS/s 20GHz 6bit ADC

ENOB is 3.7 when tested at 9GS/s and 8GHz input bandwidth

- IP functionality testing completed with a COB package.
- Development of a high-speed custom package with the lowest possible parasitics has been planned. The expected performance with a proper package is >4.5 ENOB, >20GS/s, >20GHz and <300mW.
- The COB package and our current test setup allows testing the ADC at 16GS/s and 8GHz.
- The goal is to be able to test beyond 20GS/s sample rate and 20GHz input bandwidth

Measurements achieved for sampling frequencies up to 17.2GS/s with ENOB up to 3.3 bits

Alphacore's IP Library

E The table below summarizes Alphacore's high-performance IP cores. Radiation-tolerant versions are available for all of these cores.

#	Туре	Model	Device	Туре	Foundry	Resolution [bits]	Sampling Rate [MS/s]	Input BW [MHz]	ENOB [bits]	SFDR [dBc]	Power [mW]	Status
1	IP	A10B320M	ADC	SAR	STMicro 28nm	10	320	1,300	9	69	0.7	Silicon-validated
2	IP	A10B500M	ADC	SAR	STMicro 28nm	10	500	3,000	8.9	64	1.2	Silicon-validated
3	IP	A8B620M	ADC	Hybrid	STMicro 28nm	8	620	3,000	7.4	55	1.6	Silicon-validated
4	IP	A9B1G	ADC	SAR	STMicro 28nm	9	1,000	3,000	7.7	58	2.7	Silicon-validated
5	IP	A10B2G	ADC	SAR	STMicro 28nm	10	2,400	4,000	8.4	66	6	Silicon-validated
6	IP	A6B5G	ADC	Flash	STMicro 28nm	6	5,000	10,000	5.2	37	14	Silicon-validated
7	IP	A10B5G	ADC	Hybrid	GF 22nm	10	5,000	10,000	8.8	64	19	Verified GDSII
8	IP	A8B10G	ADC	Hybrid	GF 22nm	8	10,000	20,000	7.0	53	39	Verified GDSII
9	IP	A6B12G	ADC	Hybrid	GF 22nm	6	12,500	12,000	5.3	39	13	Verified GDSII
10	IP	A4B10G	ADC	Flash	STMicro 28nm	4	10,000	25,000	3.7	27	62	Silicon-validated
11	IP	A6B10G	ADC	Flash	STMicro 28nm	6	10,000	25,000	4.9	40	212	Silicon-validated
12	IP	A4B20G	ADC	Flash	STMicro 28nm	4	20,000	25,000	3.1	26	104	Silicon-validated
13	IP	A6B20G	ADC	Flash	STMicro 28nm	6	20,000	25,000	4.5	37	376	Silicon-validated
14	IP	A6B10G	ADC	Flash	GF 22nm	6	10,000	25,000	5.1	44	114	Verified GDSII
15	IP	A6B20G	ADC	Flash	GF 22nm	6	20,000	25,000	5.0	42	388	Verified GDSII
16	IP, IC	A6B20G-IC	ADC	Flash	GF 22nm	6	20,000	20,000	4.9	40	743	Verified GDSII
17	IP	A8B40G	ADC	Hybrid	GF 22nm	8	40,000	25,000	6.5	54	194	Verified GDSII
18	IP	A16B160M	ADC	Hybrid	GF 22nm	16	160	200	13.1	86	48	Verified SPICE netlist
19	IP	D12500M	DAC	Current Steering	GF 55nm	12	500	1,000	9.8	72	36	Silicon-validated
20	IP	D6B6G	DAC	Current Steering	GF 22nm	6	6,000	9,000	5.5	42	15	Verified GDSII
21	IP	D6B12G	DAC	Current Steering	GF 22nm	12	6,000	6,000	9.0	63	121	Verified SPICE netlist
22	IP	PLL13G	PLL	Fractional N	TSMC 130nm 5.5GHz – 13.5GHz, 350fs jitter Silicon-validated					Silicon-validated		

8/14/2020

Copyright © 2020 Alphacore, Inc | SBIR Data Rights

Summary

- The DOE Nuclear Physics STTR Phase II program discussed in this presentation strengthens Alphacore's digitizer and readout ASIC family offered to Nuclear Physics, Scientific, Space and Defense customers.
- The program is at the end of the Year 2.
- This presentation also introduces Alphacore's silicon evaluated ADCs and other IP relevant to Nuclear Physics researchers.
- Alphacore encourages the researchers to contact us for IP and ICs availability.

Acknowledgement

Work on this program was funded by Department of Energy / Nuclear Physics, Grant #DE-SC00017074.

We especially appreciate the guidance by Drs. Manouchehr Farkhondeh and Michelle Shinn.

ALPHACORE

ROBUST HIGH-PERFORMANCE MICROELECTRONICS

Questions?

8/14/2020