Precise and Ultra-Stable Laser Polarization Control for Polarized Electron Beams

Principle Investigator: Bo Guo DOE SBIR Phase II Contract No. DE-SC0018600 8/14/ 2020

2020 DOE-NP SBIR/STTR Exchange Meeting

Outline

- Company Overview
- Background and Motivations
- Project Task and Technical Approach
- Schedule and Current Status
- Progress and Results
- Acknowledgement

Company Overview

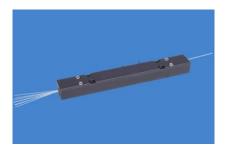
Headquarter in Sterling, VA

Columbia, MD

5,500 square feet of available work space, including

- Multiple optical labs
- Optical clean room
- Chemical lab
- Fiber components assembly lab

Company Overview


Core Capabilities:

Laser R&D:

High Power Diode Laser, High Power/High Energy Fiber laser/amplifier, and novel optical parametric oscillator for Quantum Network.

Optical Coating:

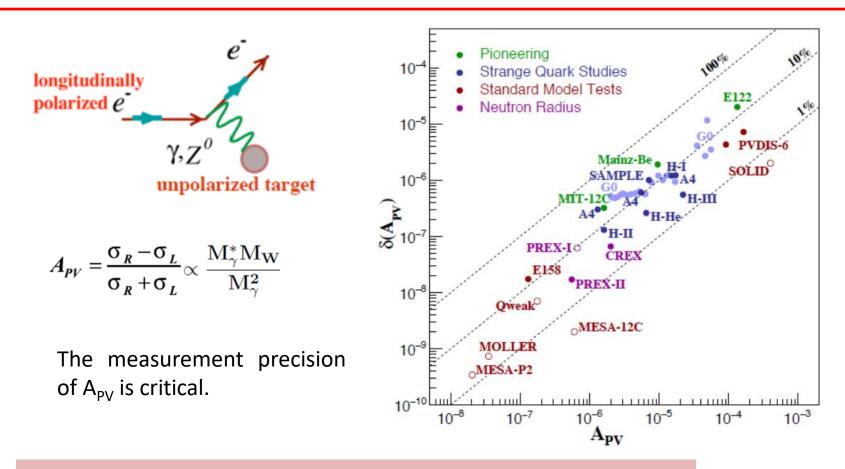
Provide customerdesigned optical coating for application of fiber laser, mid-IR laser beam delivery, etc.

Fiber Optics:

Provide standard and customized Fiber Optical component and service

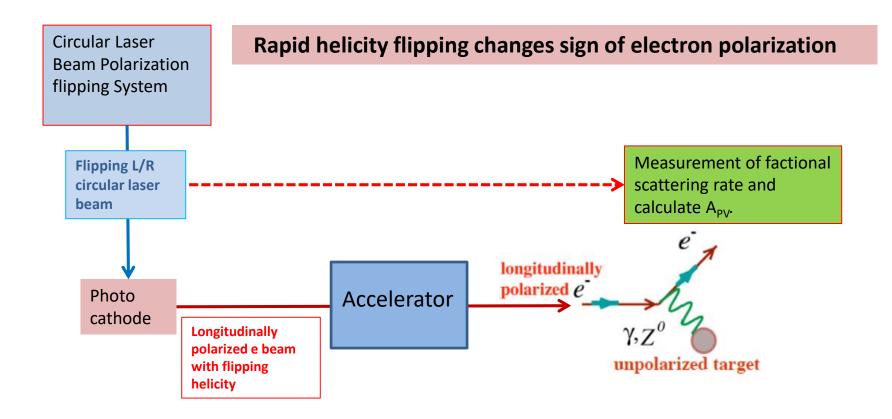
We have had collaboration and provided products to industries and research labs such as ORNL, JLab, etc.

Project Objective:

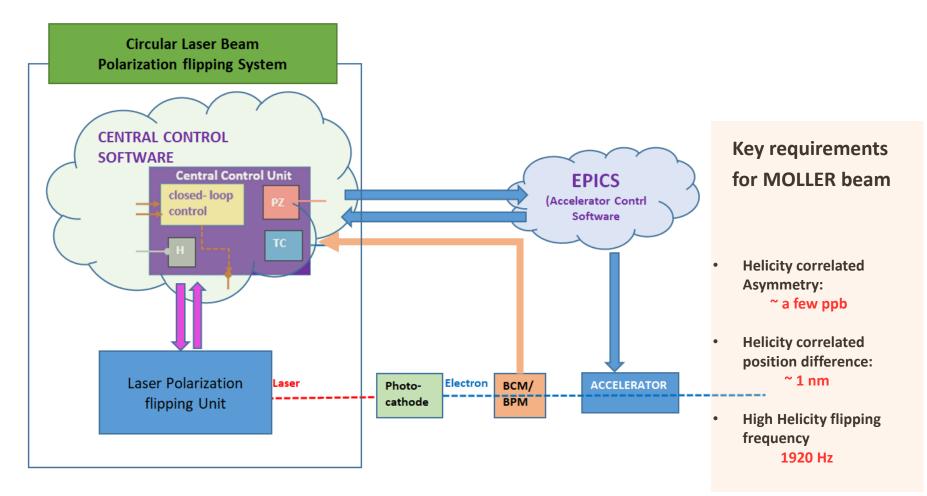

This SBIR program is to design, optimize, evaluate, and build a prototype of a high Precision, highly stable and fast switching circular laser beam polarization flipping system.

Especially to increase precision required by next generation <u>Parity</u> <u>Violating Electron Scattering (PVES)</u>

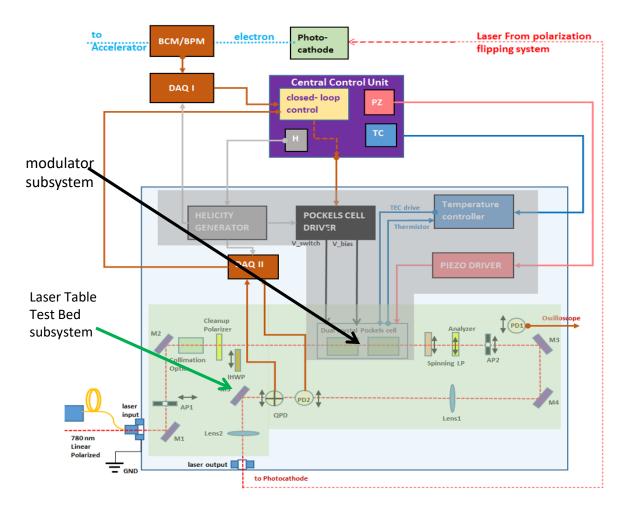
Since first developed in E122 at SLAC in 1978, <u>PVES</u> has become a precision tool used in many physics program of experiments such as studying structure of protons and nuclei and searching for new Beyond the Standard Model (BSM) physics.



Background and Motivation


The properties of the incident electrons shall remain identical except the sign of polarization, but they tends to change due to various factors...

Circular Laser beam Polarization Flipping System in PVES


The helicity correlated asymmetry causes uncertainty to the measurement of A_{PV}

Technical Approach

Circular Polarization Flipping System

Technical Approach

Parameter	Specification							
Repetition rate	1920 Hz							
Duty cycle	>95%							
Spot size asymmetry (RMS)	< 10-4							
Position difference (no analyzer)	< 200 nm							
Position difference (S1 or S1analyzer)	< 400 nm							
Intensity noise	< 100 ppm							
4-peak asymmetry	< 7,000 ppm							
HC intensity asymmetry	< 500 ppm							
Lifetime*	> 10,000 hrs							

Schematic of Circular Polarization Flipping Laser Beam Unit

Targeted Modulator Subsystem Specification

Parameter	Specification
Clear aperture	8 mm
PER	>30 dB
Driving voltage (@780 nm, V± _{π/2})	± 250V
Bias voltage	< 50V
Voltage resolution	0.01V
Operation frequency	1920 Hz
Residual linear polarization	< 5%
Settle time	< 25 us
Ringing variation after settle time	Within ± 10%
Temperature stability	Within ± 0.005°C
Translation resolution	XY: 1 um, Z: 0.1 mm
Angle resolution	Pitch, Yaw: 50 urad, piezo Roll: 0.5 mrad, manual

Improvement from Phase I

- Dual crystal configuration with active individual cell alignment to cancel out inherent birefringence
- Improve transition performance by optimizing driver design
- Use Large beam size /Crystal size
- Closed loop control
- Implement better X/Y and Pitch/Yaw scan

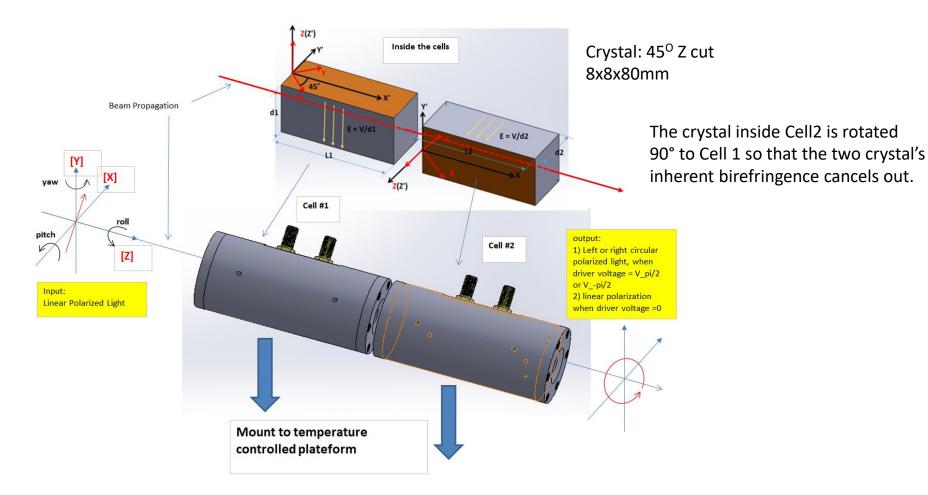
Same as in Phase I.

• Precise temperature control

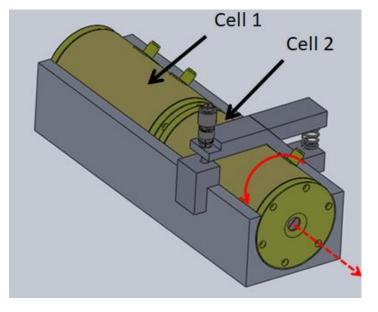
Schedule and Current Status

The following table shows our proposed schedule and the progress (green arrow)

	Task Nama	Duration	Q2' 19			Q3' 19		Q4' 19			Q1' 20			Q2' 20			Q3' 20			Q4' 20			Q1' 21			(L		
ID	Task Name	Duration	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
	Precise and Ultra-stable Laser Polarization																												
1	control for Polarized eBeam Generation	104w																	Г										
2	Program Authorization	0w		\diamond																									
3	Sytem Design	24w								-0																			
4	System Design Review	0w							\diamond										Г										
5	Labotory Verification of subsystems	29w													0														
6	Laboratory subsystem Demonstration	0w													\diamond														
7	Design detailing	21w																	•										
8	Critical Design Review	0w																	\diamond										
9	System Building and Test	38w																	D								0		
10	System In-house Evaluation and Delivery	0w																									\diamond		
11	System Integration and Evaluation	5w																											
12	System Completion	0w																										\diamond	
13	Final Report	4w																											
14	Program Management	104w																											

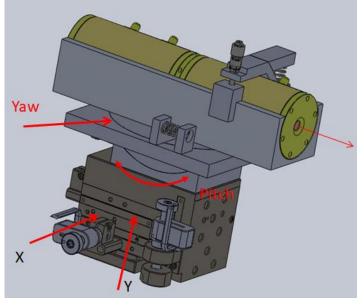

Modulator subsystem

- Design of dual DKDP crystal EO modulator and alignment mount
- Design, build and evaluate high voltage driver for Pockels cell


Laser table test bed subsystem

- Detailed design of laser table test bed
- Purchase parts and equipment to build laser table test bed subsystem

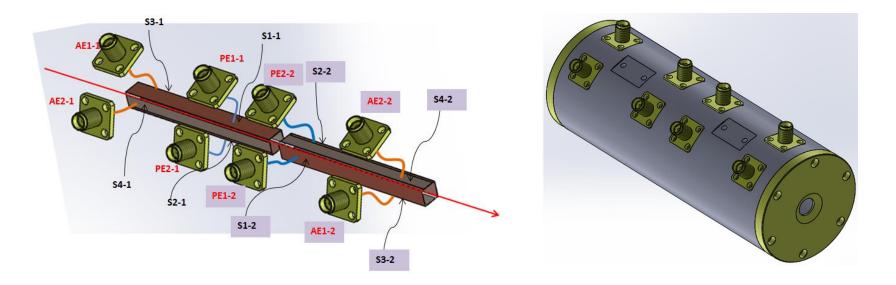
Modulator Subsystem – Dual DKDP Pockels cell design


Modulator Subsystem – Dual DKDP Pockels cell Mount design

Cell Relative Roll adjustable

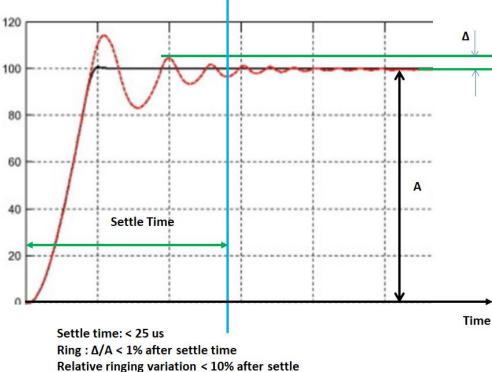
The roll of Cell 2 can be actively adjusted during modulator subsystem building and testing to cancel out of the inherent birefringence

X/Y and Pitch/Yaw scan



Picomotor actuator for scan driving.

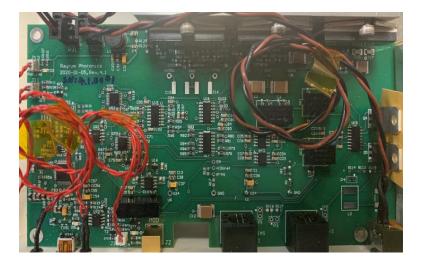
- Software control
- Precise scan resolution X/Y: 1 um Pitch/Yaw: 50 urad


Non-uniformity compensation-control

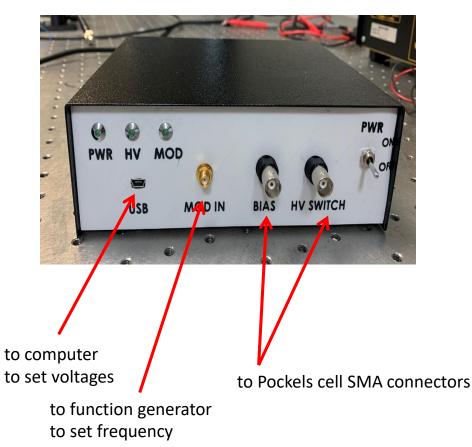
Dual DKDP Pockels cell with auxiliary electrodes

- We designed a dual DKDP Pockels cell with Auxiliary Electrode to suppress beam steering.
- The figure on the left shows auxiliary electrodes (AE) connection for the dual DKDP Pockels cells.
- The figure on the right is the mechanical model of such Pockels cell.
- We will also use a dual DKDP Pockels cell with Auxiliary Electrode to build a modulator subsystem to evaluate the performance improvement.

** **Modulator Subsystem – Driver for Pockels Cell**

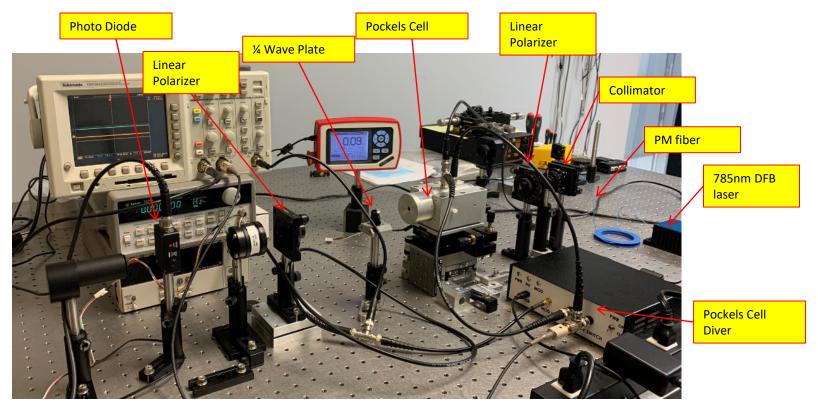

Transition Requirements for Driver Design

When the driver voltage switch between $V \pm \pi/2$, the transition performance shall meeting the specification shown left.


With <25 us settle time, dead zone < 5% for \sim 2kHz filling frequency.

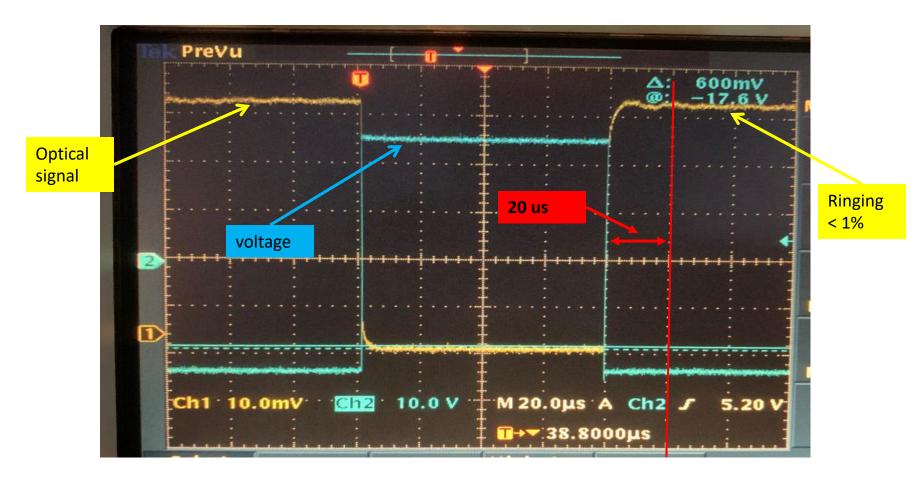
With specified ringing specification, helicity correlated asymmetry specs can be met.

High Voltage Diver PC board



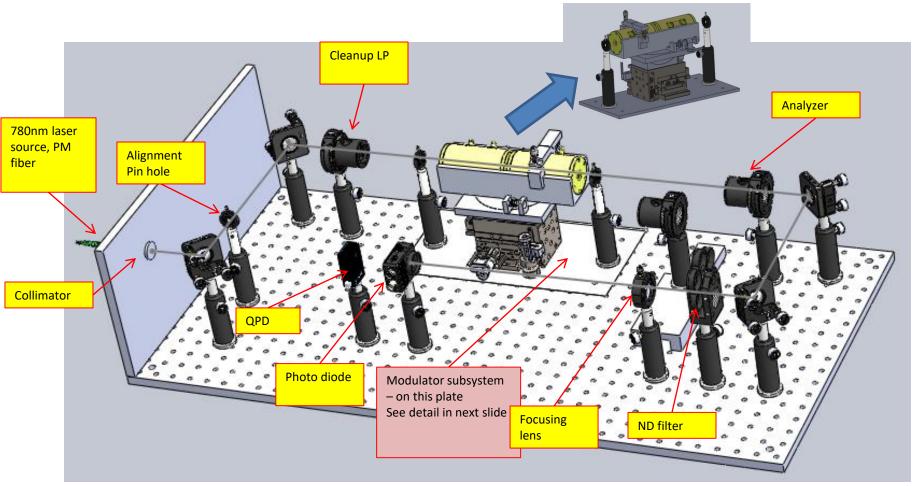
Modulator Diver front panel

- digital bi-level highpower switching design
- 5.5 mV resolution with precise voltage reference
- Rise time and ringing compromise


Modulator Sub-system – 4.Pockels Cell Driver Evaluation

Experimental setup for high voltage driver evaluation

Transition Characteristics Test Rsults



Summary of Test Results

	Test results								
Parameter	Specification	Note	Subsystem Test results						
Clear aperture	8 mm		by design;						
PER	>30 dB		will test after receiving crystal and modulator assembly						
Driving voltage (@780 nm, V $\pm_{\pi/2}$)	± 250V	Within ± 10% range	227/-230 V, meet specs						
Bias voltage	< 50V		-24 V, meet specs						
Voltage resolution	0.01V		5.5 mV by design; verified in test						
Operation frequency	1920 Hz		meet specs in test						
Residual linear polarization	< 5%		will test after receiving crystal and modulator assembly						
Settle time	< 25 us	Ringing < 1% after settle time	< 20 us for both rise and fall						
Ringing variation after settle time	Within ± 10%								
Temperature stability	Within ± 0.005°C		meet specs in test, will test again after receiving crystal and modulator assembly.						
Translation resolution	XY: 1 um, Z: 0.1 mm	Range: XY: ± 1.0 mm, piezo; Z: ± 2.0 mm, manual	by design, using Newport picomotor acctuator with 0.5" travel and 30 nm resolution						
	Pitch, Yaw: 50	Range: Pitch, Yaw: ± 10 mrad,	by design, using Newport picomotor acctuator with						
Angle resolution	urad, piezo	piezo	0.5" travel and 30 nm resolution						
Angle resolution	Roll: 0.5 mrad,	Roll: ± 10 mrad, manual	by design, using Newport picomotor acctuator with						
	manual		0.5" travel and 30 nm resolution						

Results achieved

Laser Table test bed Subsystem – 1. Mechanical design

Mechanical design of Laser Table Test bed

- DOE-NP SBIR Program and Dr. Michelle Shinn for the funding opportunity and many support
- Collaborators: Shukui Zhang (Jlab), Kent Paschke (UVa) and other institutions
- And thank the kind attention from All of you

