

Pacific MicroCHIP

Pacific MicroCHII

12-bit 32 Channel 500MSps Low Latency ADC

Award Number: DE-SC0017213 Ph II project, Year 2 (under NCE)

Pacific MicroCHIF

acific MicroCHII

Dalius Baranauskas Anton Karnitski

Presentation Outline

- The Company, Its Specialization/Expertise
- A 12-bit 32 Ch 500MS/s ADC (being developed)
- Relevance to the NP Program
- Project Goals
- Chip Specifications and Architecture
- Comparison to ADCs Available on the Market
- Physical Implementation
- Chip Carrier and Packaging
- Testing Setup and Results
- Project Schedules and Milestones
- Future Plans

The Company

- Pacific MicroCHIP Corp. was incorporated in 2006.
- It is headquartered in Culver City, California.
- Main focus of the Company providing IC/ASIC design services and turnkey solutions.

Office in Culver City, CA

Our Offerings

IC/ASIC Design Services:

- Circuit Design (analog, RF/mixed, digital)
- Simulation
- Physical Design
- Chip Assembly

Turnkey Solutions:

- IC Design
- Chip Fabrication Logistics
- Package Development (involving a 3rd party)
- Chip Packaging (involving a 3rd party)
- PCB Development for Testing/Eval. (involving a 3rd party)
- Testing/Characterization (an in-house lab)
- Delivery of Chips, Parts and Board Level Solutions

Relevance to the NP Program Partile MicroBill

<u>NP detectors require thousands of signal processing channels =></u> need for digitizers to:

- Shrink in size our ASIC combines 32 independent ADCs per chip.
- Reduce power consumption expected 25mW / ADC (w/o JESD buffers).
- Reduce wire congestion our ADCs have a serial interface that can be shared between 2 or 4 ADCs

Upgrades in these systems demand for:

- Digitizing accuracy our ADC features 12-bit resolution.
- Adequate sampling speed our ADC features up to 0.5GS/s.
- Low conversion latency we offer 8ns.

Targeted specific applications:

- Low latency particle beam control systems.
- Imaging and spectroscopy systems for gamma-ray detectors.
- Multichannel detectors based on tube and silicon photo multipliers.

Project Goals for Phase II Partie Monthering

Within this project we will:

- Design circuits and layout for the ADC ASIC.
- Fabricate the chip.
- Develop a special chip carrier.
- Package the chips.
- Develop a test PCB and a DUT socket.
- Develop a GUI and a test bench.
- Test and characterize the ADC ASIC.
- Prepare a datasheet for marketing.
- Submit deliverables to the DoE.

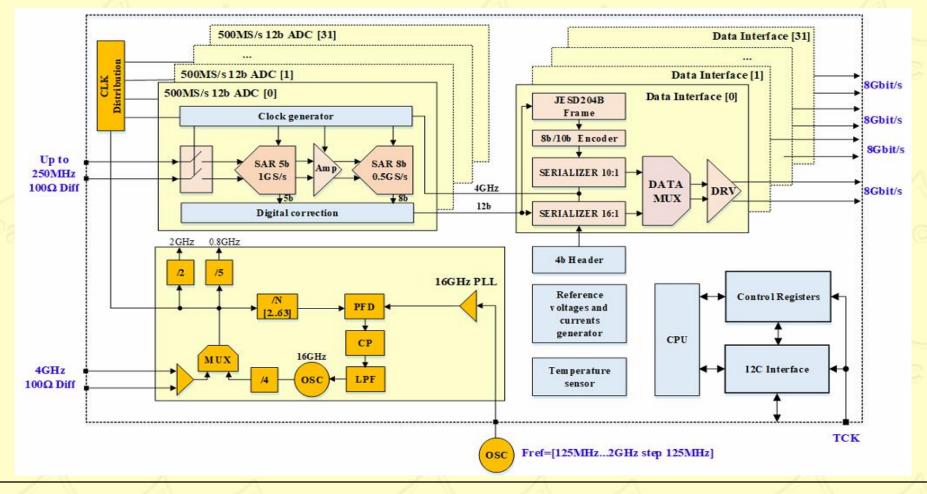
12-bit 32 Channel 500MSps Low Latency ADC

Specifications (expected performance):

- 32 independently operated ADC channels
- 500 MS/s sampling rate
- 0.6Vpp differential input swing
- 10-bit ENOB
- 250MHz input signal bandwidth
- -40C..+125C temperature range
- 25mW/channel power consumption (with interface)

- JESD204B output data interface
- 8ns latency (direct ADC data output mode)
- 32x8Gb/s output data rate
- I2C interface for ASIC control
- 7.7mm² ASIC layout footprint
- A solder bumped die in a BGA package
- 28nm CMOS technology

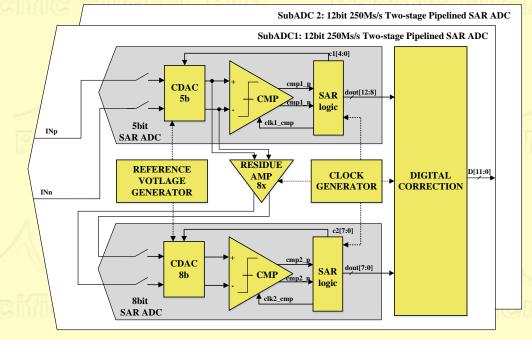
Pacific MicroCHIP Corp.


US Patent Pending

7

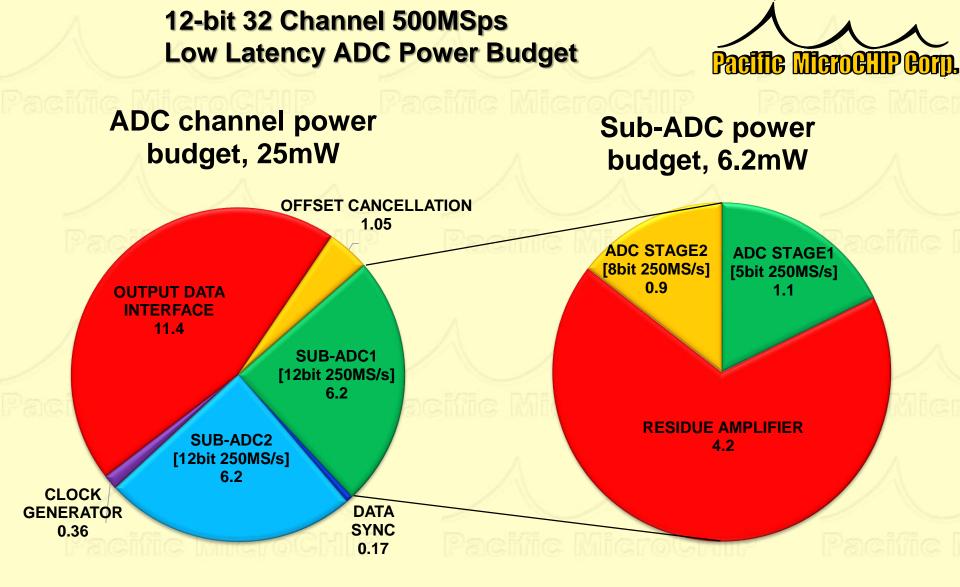
12-bit 32 Channel 500MSps Low Latency ADC

ASIC Block Diagram


8

Pacific MicroCHIP Corp.

12-bit 500MSps ADC Core



- Two-times time-interleaved ADC core
- Sampling clock skew adjustment
- Two-stage pipelined SAR architecture
- Programmable residue amplifier gain
- Programmable ADC FS range
- Bootstrapped input switches
- 1-bit redundancy between ADC stages

		•	•	
	STAGE1 (5b)	TRACK CONVERSION	RESIDUE TRANSFER	
Sub-ADC 1 🚽 RESIDUE AMP		OFF	AMPLIFICATION	
	STAGE2 (8b)	CONVERSION	TRACKING	
Ping-Pong		< 2ns	0.5ns 1.5ns	→ LYZCII
	STAGE1 (5b)	RESIDUE TRANSFER	TRACK CONVERSION	
Sub-ADC 2 RESIDUE AMP		AMPLIFICATION	OFF	
	STAGE2 (8b)	TRACKING	CONVERSION	A

Pacific MicroCHIP Corp.

Pacific MicroCHIP Corp.

US Patent Pending

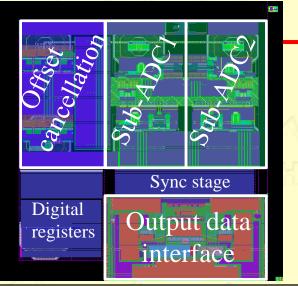
10

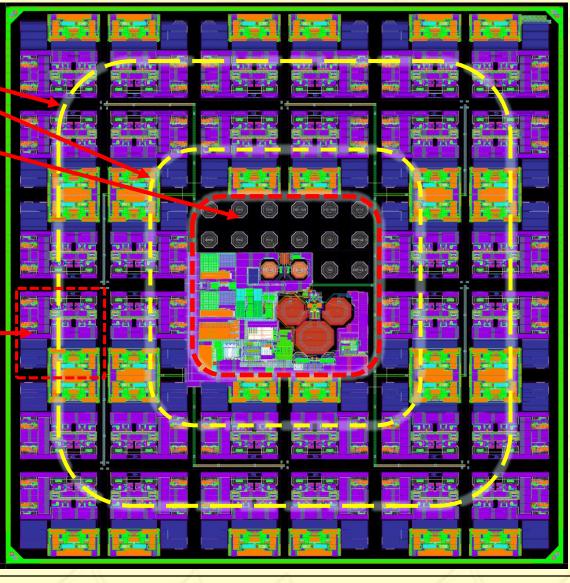
Comparison to ADCs Available on the Market

#	Vendor	# of Channels	Sample Rate, MS/s	Power Cons. per Channel	Architecture & Latency	
1.	TI 12-bit ADS52J90	32	40	41mW	Pipeline 2.5us	
2.	TI 12-bit ADS5403IZAYR	1	500	1W	Pipeline 240ns	
3.	TI 12-bit ADS54T04IZAYR	2	500	1.15W	Pipeline 240ns	
4.	ADI 12-bit AD9234BCPZRL7	2	500	1.5W	Pipeline 240ns	
5.	Pacific Microchip Corp. 12-bit*	32	500	25mW	SAR/Pipeline 8ns	

* Expected performance

ASIC's Physical Implementation


Chip periphery:


32 independent ADC channels located in 2 circles

Central part:

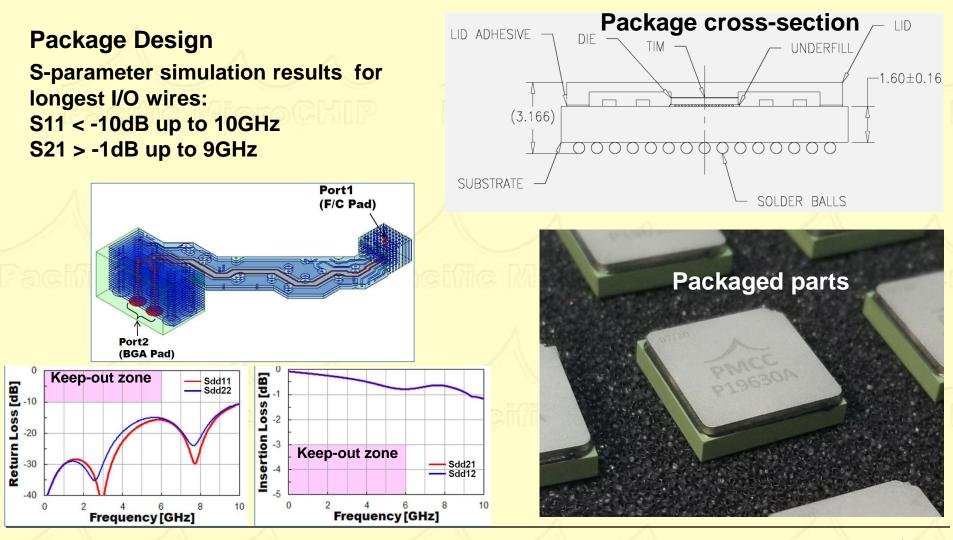
- PLL with a clock tree
- Temperature sensor
- CPU for calibration
- I2C interface for control

Single ADC channel

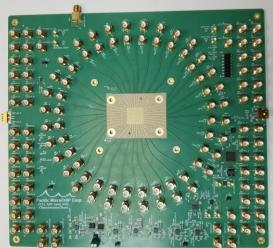
Pacific MicroCHIP Corp.

Fabricated Chips

• PLL Temperature Sensor CPU for Calibration I2C Control Interface

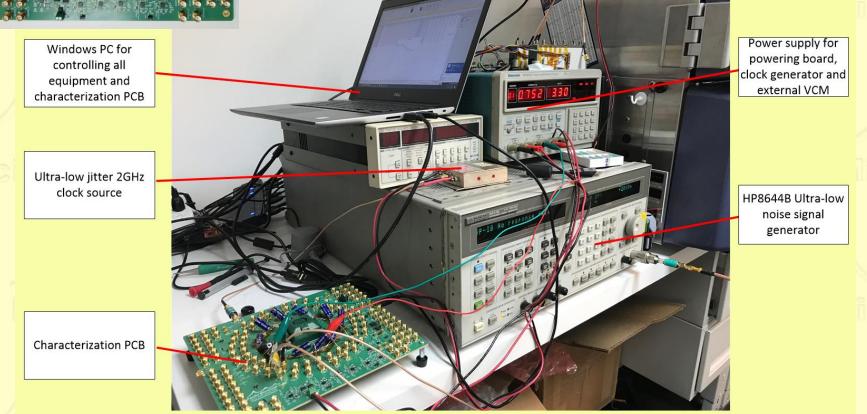

ADC Channel (1 out of 32) Output Data Buffer Digital Registers Sub-ADC1 Sub-ADC2 **Offset Cancelation Common Block With:** - 60

Pacific MicroCHIP Corp.


Chip Packaging

BGA 15.2 x 15.2 mm, 18 x 18 balls, 0.8mm ball pitch

Pacific MicroCHIP Corp.



Testing Setup

← Test Board

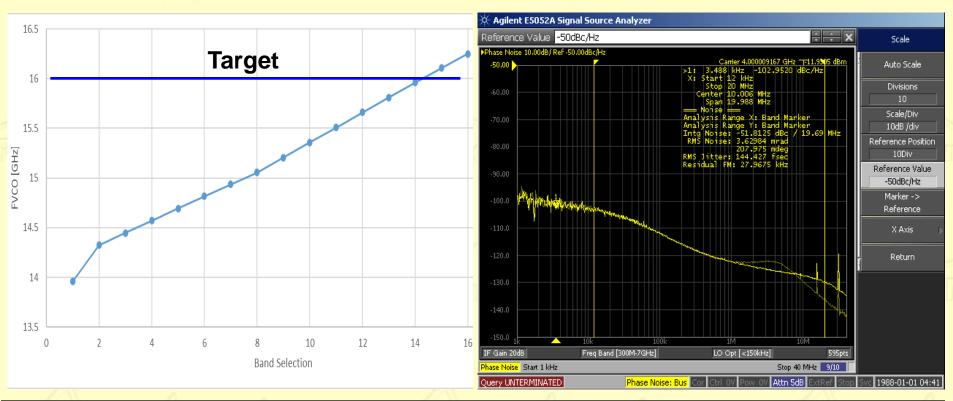
- Exposed area in the center for DUT socket
- 32 differential inputs in a circle for delay equalization
- 32 differential outputs at the PCB's edge (less critical to PCB losses)

Pacific MicroCHIP Corp.

Preliminary Testing Results

Power Consumption

mA] P [mW]
45 400.5
9 16.2
38 79.2
64 676.8
50 54.0
1226.7
38.3

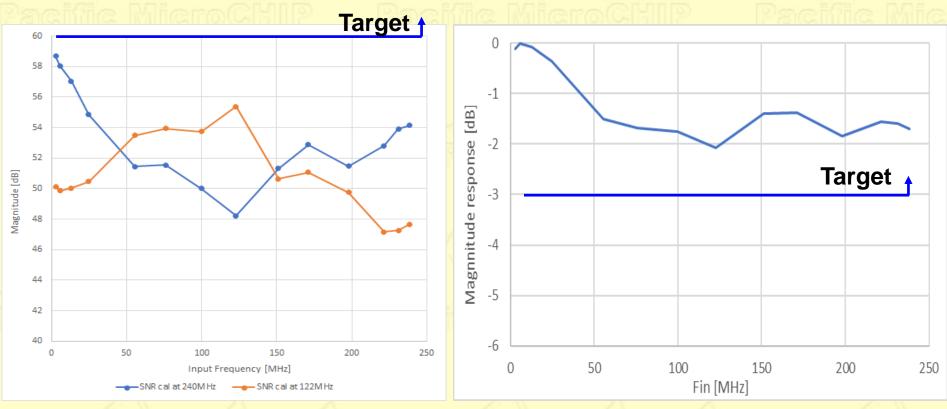

Notes: Power of the JESD204B interface is included. An input signal is applied only to a single ADC out of 32. The VDDD consumption is expected to increase when a signal is applied.

Preliminary Testing Results

Pacific Microfill Corp.

PLL Performance

Targeted frequency achieved on the 14th band. It will be tuned up in the 2nd prototype. Phase noise tested at 16GHz/4. 144fs RMS jitter (12K-20MHz range). Jitter does not depend significantly on PLL BW.



17

Preliminary Testing Results

ADC Performance

ENOB vs. Input signal frequency. When ADC is calibrated at 240MHz: 9.5 ENOB @ 5MHz 7.2 ENOB @ 250MHz (Nyquist) When ADC is calibrated at 122MHz: 8.5 ENOB @ 122MHz

Project Schedule

Task Name	2, 2018 May Jun			Qtr 1, 2019				Qtr 1, 2020		Qtr 3, 2020	Qtr 4, 2020 Oct Nov Dec .
Low Latency 32 Ch ADC ASIC's Development - Phase II Project Plan	-				npi inay ban				The may bar		
⁻ Design and Simulation			Des	sign and Simulati	on						
1. Circuit design, simulation verification		145 days 100%		12/7							
2. Digital block design: RTL, synthesis, timing closure, P&R			65 days	12/21							
3. Layout design of all cells and blocks			120 days	1/18							
4. Accounting for layout parasitic impact				50 days 2/152/15							
5. Circuit optimization				100 days	5/10						
6. Layout integration						days 0%	9/27				
7. Layout verifications						10	days 10/11 00%				
8. Data organizing, submission for chip's fabrication							0 days				
[•] Chip Fabrication, Packaging and Testing							-	Chip Fabricati	on, Packaging	and Testing	,
9. Chip fabrication							60 day ∢	s 1/17			
10. Chip carrier development, fabrication.							« —	162 days 100%		/9	
11. Chip Packaging								100 %	- *	0 days 100%	
12. Design, fabrication and assembly of the testing board							« —	70 days 100%		-7/7	
13. Packaged ASIC (DUT) assembly on the PCB								100 %		5 days	5
14. Development of the GUI for testing process automation							*	85 days 100%		 7/14	
15. Prototype chip characterization										20 day	9/22
16. Testing data comparison with specifications and concluding on meeting requirements										30 da	ys 10/6
17. Preparation of the specifications/description of the ASIC's IP block for marketing											22 days 11/5 0%
18. Data collecting/organizing and providing a technical report											21 days 11/20 0%

Future Plans

- Finish testing the chip's 1st prototype (End of Ph II).
- Transition to Phase IIA to redesign the chip, increase its performance, fix issues identified during testing.
- Fabricate the final chip.
- Test/evaluate it.
- Prepare the chip description and datasheets.
- Organize the ADC ASIC design as an IP block and advertise it.
- Provide the chip to the DoE community and commercial customers.

We would appreciate any application ideas and customer leads for the presented 32ch ADC !

THANK YOU !

