HOM Absorber Design for eRHIC ERL Cavity

SBIR Grant Award No. DE-SC0018466

T. Schultheiss
TJS Technologies LLC
tjstechnologies@outlook.com
Aug 13, 2020
Outline

- TJS Technologies LLC (2016)
 - Engineering Services
 - MSU Michigan State University
 - FRIB ASME evaluation of 644 MHz Cavity and Tuner
 - FHI Fritz Harbor Institute
 - Free Electron Laser Deflector Cavity
 » RF Thermal Analysis – Design, Coupling
 - JLAB
 - SRF Cavity Cooled by Cryocoolers – Thermal Analysis
 - FPC Coupling to Locate the FPC nearer the cavity
 » (450kW per FPC)
 - Higher Order Mode Absorber SBIR Phase I & II
 - Waveguide
 - Beamline
ASME Structural evaluation of FRIB 644 MHz Cavity and Tuner

- General Requirements of ASME code Section VIII Division 2 – Design by Analysis
- Material Properties
- Boundary Conditions
- Loads to be Considered
- Design By Analysis 2015 Section VIII, Division 2 Part 5 of ASME Code
 - Protection Against Plastic collapse Part 5.2
 - Limit Load Analysis Part 5.2.3
 - Elastic-Plastic Analysis Part 5.2.4
 - Protection Against Local failure Part 5.3
 - Elastic Analysis 5.3.2
 - Protection against collapse From Buckling Part 5.4
 - Bifurcation – Eigenvalue Buckling Part 5.4.1.2
 - Protection Against Failure From Cyclic Loading Part 5.5
 - Experience with comparable equipment operating under similar conditions Part 5.5.2
 - Ratcheting Assessment – Elastic-Plastic Stress Analysis Part 5.5.7

- Vibration
- Frequency Sensitivity to Pressure
- Tuner Evaluation
Engineering Service FHI

Develop a Beam Deflector to Provide 2 500 MHz Beams from a single 1 GHz beam

2 Color FEL

Shape modified for 500 MHz

Frequency shift for manufacturing and tuning

RF Analysis

Electric Field Along Beamline

3-D Magnet calcs
Coil geometry
Specification
Field Quality

Thermal Analysis

Magnet Analysis
RF and Thermal Analysis and Coupling for power couplers
• Motivation

 – In 2017 and 2018 BNL was evaluating designs for the electron accelerator in eRHIC, now the EIC, their proposed electron-ion collider

 • It included electron cooling using a multi-cell cavity with high average current and high bunch charge in CW energy recovery mode. This cavity would require a higher order mode absorber with considerable power absorption capability.
Higher Order Mode Absorber SBIR Phase I and Phase II Tasks

• Phase I
 – Define/update HOM specifications with BNL
 – Develop the concept design of the absorber module
 – Perform RF/Thermal and Structural Analysis of the HOM module
 – Develop manufacturing plan and design for the HOM absorber module to a cost level.

• Phase II
 – Manufacture Prototypes
 – Waveguide HOM
 – Beamline HOM
BNL designed a cavity and B-shaped waveguide to suppress multi-pacting and improve impedance decreasing the number of waveguides per cavity. BNL developed a B-Shaped waveguide to suppress multi-pacting and improve impedance decreasing the number of waveguides per cavity.

BNL paper SRF2017 TUPB002

BNL supplied a set of HOM Freq with its associated power up to 3.1 GHz where HOM power is 1.2 e-5 W.

Table to left is the power sorted by power for the first 19 HOM modes.

Table supplied by BNL for freq to 3.13 GHz.

For analysis HOM power is not degraded by nearby cavity mode power it is determined from beam frequency and used for design limits making the design conservative.

Total Power for Freq to 3.1 GHz is 6.01 kW.
Model to Determine Tile Heat Loads with curve and shortened tile length to compact geometry

Driven Model

Input Excitation Port

Frequency Dependent permittivity and Loss tangent

Surface Losses assuming Stainless Steel

Output

S11, Power for each tile group
For each Frequency
Sum Power for each tile group over HOM frequencies

10 Tile groups

PEC boundary short

Radius of curvature

.1 meters
.2 meters
.3 meters

RF in

S.S. surface

Tile groups with varying thickness
Made from SC-35, graphite loaded
Fields at 1.2197 GHz
Curved Waveguide Radius .1 meters

Tabulate Results for all evaluated HOMs
4 HOMs per cavity

<table>
<thead>
<tr>
<th>Freq</th>
<th>Power</th>
<th>S11</th>
<th>ReflP</th>
<th>Surf Loads</th>
<th>ld1</th>
<th>ld2</th>
<th>LD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2197E+09</td>
<td>2.41637E+02</td>
<td>3.63340E-02</td>
<td>3.18999E-01</td>
<td>1.34287E+00</td>
<td>2.05640E+01</td>
<td>2.10396E+01</td>
<td>2.38696E+01</td>
</tr>
<tr>
<td>1.21036E+09</td>
<td>1.52642E+02</td>
<td>2.50770E-02</td>
<td>9.59898E-02</td>
<td>8.57093E-01</td>
<td>1.29309E+01</td>
<td>1.27258E+01</td>
<td>1.45691E+01</td>
</tr>
<tr>
<td>1.23850E+09</td>
<td>1.40402E+02</td>
<td>6.30190E-02</td>
<td>5.57593E-01</td>
<td>7.64159E-01</td>
<td>1.22239E+01</td>
<td>1.29842E+01</td>
<td>1.51182E+01</td>
</tr>
<tr>
<td>1.24789E+09</td>
<td>1.33295E+02</td>
<td>7.37400E-02</td>
<td>7.24802E-01</td>
<td>7.18159E-01</td>
<td>1.18679E+01</td>
<td>1.25528E+01</td>
<td>1.50519E+01</td>
</tr>
<tr>
<td>1.32233E+09</td>
<td>1.03705E+02</td>
<td>8.02920E-02</td>
<td>6.68568E-01</td>
<td>5.16512E-01</td>
<td>1.37696E+01</td>
<td>1.05113E+01</td>
<td>1.55004E+01</td>
</tr>
<tr>
<td>1.22912E+09</td>
<td>1.02832E+02</td>
<td>5.03010E-02</td>
<td>2.60185E-01</td>
<td>5.65519E-01</td>
<td>8.82375E+00</td>
<td>9.26745E+00</td>
<td>1.05817E+01</td>
</tr>
<tr>
<td>1.90467E+09</td>
<td>6.51005E+01</td>
<td>1.17180E-01</td>
<td>8.93905E-01</td>
<td>2.25240E-01</td>
<td>1.63844E+01</td>
<td>1.32115E+01</td>
<td>8.47076E+00</td>
</tr>
<tr>
<td>1.34171E+09</td>
<td>5.33818E+01</td>
<td>7.12660E-02</td>
<td>2.71118E-01</td>
<td>2.63818E-01</td>
<td>7.34672E+00</td>
<td>5.55251E+00</td>
<td>8.01851E+00</td>
</tr>
<tr>
<td>1.30418E+09</td>
<td>3.16275E+01</td>
<td>9.60880E-02</td>
<td>2.92014E-01</td>
<td>1.61430E-01</td>
<td>3.66959E+00</td>
<td>3.07313E+00</td>
<td>4.51124E+00</td>
</tr>
<tr>
<td>1.20097E+09</td>
<td>3.15965E+01</td>
<td>2.84580E-02</td>
<td>2.55887E-01</td>
<td>1.79180E-01</td>
<td>2.66583E+00</td>
<td>2.49959E+00</td>
<td>2.93756E+00</td>
</tr>
<tr>
<td>1.35110E+09</td>
<td>1.33223E+01</td>
<td>6.06370E-02</td>
<td>1.15167E-01</td>
<td>1.53636E-01</td>
<td>4.44486E+00</td>
<td>3.86306E+00</td>
<td>4.70684E+00</td>
</tr>
<tr>
<td>1.36986E+09</td>
<td>3.09785E+01</td>
<td>3.57750E-02</td>
<td>3.96479E-02</td>
<td>1.49785E-01</td>
<td>4.60074E+00</td>
<td>3.59557E+00</td>
<td>4.60617E+00</td>
</tr>
<tr>
<td>1.29480E+09</td>
<td>2.82145E+01</td>
<td>9.73070E-02</td>
<td>2.67153E-01</td>
<td>1.45229E-01</td>
<td>3.11195E+00</td>
<td>2.72818E+00</td>
<td>3.91699E+00</td>
</tr>
<tr>
<td>1.28542E+09</td>
<td>2.63835E+01</td>
<td>9.65040E-02</td>
<td>2.45710E-01</td>
<td>1.36982E-01</td>
<td>2.76559E+00</td>
<td>2.54465E+00</td>
<td>3.54499E+00</td>
</tr>
<tr>
<td>1.27603E+09</td>
<td>2.62213E+01</td>
<td>9.37260E-02</td>
<td>2.30342E-01</td>
<td>1.37344E-01</td>
<td>2.61716E+00</td>
<td>2.52373E+00</td>
<td>3.39182E+00</td>
</tr>
<tr>
<td>1.26665E+09</td>
<td>2.55163E+01</td>
<td>8.90190E-02</td>
<td>2.02201E-01</td>
<td>1.34870E-01</td>
<td>2.43513E+00</td>
<td>2.44740E+00</td>
<td>3.16344E+00</td>
</tr>
<tr>
<td>1.25727E+09</td>
<td>2.49354E+01</td>
<td>8.23760E-02</td>
<td>1.69206E-01</td>
<td>1.33040E-01</td>
<td>2.28961E+00</td>
<td>2.37570E+00</td>
<td>2.95315E+00</td>
</tr>
<tr>
<td>1.31357E+09</td>
<td>2.27740E+01</td>
<td>9.28180E-02</td>
<td>1.96202E-01</td>
<td>1.15280E-01</td>
<td>2.77424E+00</td>
<td>2.23229E+00</td>
<td>3.31811E+00</td>
</tr>
<tr>
<td>2.56145E+09</td>
<td>1.94891E+01</td>
<td>8.87690E-02</td>
<td>1.53573E-01</td>
<td>7.36090E-02</td>
<td>3.76744E+00</td>
<td>3.24892E+00</td>
<td>2.35598E+00</td>
</tr>
</tbody>
</table>

Power 241.6 Watts (966.5/4)
S11 0.0363
ReflP 0.319 W

Surface Loss 1.34 W
SS surface elec cond

Electric Field V/m
Power In, S11, Reflected Power, Surface Loss
Sum of Power into Waveguide Absorber

- Initial HOM absorber module geometry
 - 1492.4 W of 1501.5 W is absorbed 99.7%
 - 10 tile pairs
 - Thickness range .200” to .75”
 - 2 at .2”, 1 at .220”, 2 at .225”, 3 at .250”, 1 at .65”, 1 at .75”
Higher Order Mode Absorber SBIR Phase II

• Manufacture HOM Core
 – Can be used for Waveguide or Beamline Absorber

- Waveguide core
- Beamline core

• Manufacture Housing and Assemble Core and Housing

- Waveguide HOM
- Beamline HOM
Initial Braze Step in Fabrication of Cores

Waveguide Backer Assemblies (without SiC tiles)
Extra assemblies are for Ceramic joining tests
Join Ceramic Tiles to Backers

Backer-Tile Assemblies shown after joining
Machining of Waveguide Assembly

Machining of Waveguide Housing Parts
Waveguide parts after heat treat (annealing). Prior to final machining.

Parts stacked with braze alloy - thermocouples applied, ready for intermediate braze step
SBIR Summary

• On Track to complete waveguide and Beamline HOM Absorber by end of Yr2

• Using HOM core can develop many geometries to accomplish HOM absorption

• Size of beampipe absorber can be accommodated by adding more cores circumferentially