

Nuclear Physics Gamma-ray Imaging System for Real-Time Rare Isotope Harvesting, Monitoring and Radiochemical Separation – NP Imager

DE-SC0017245 5/21/2018 - 5/20/2021

Ethan Hull Ph.D PI, CEO and Technical Director

Matt Kiser, Ph.D. Director of Physics

Desmond Longford NP Imager Product Manager and Radiochemist

A collaboration with: ORNL (Jared Johnson, Jon Garrison) MURR (Heather Hennkens and Alan Ketring) NSCL (Greg Severin)

- PHDS Co. Introduction
- NP Imager Concept
- Continued NP Imager Prototype Development
- Sales of NP Imager Products!!
 - Already sold 3 NP Imager systems + 1 pending!!

Introduction to PHDS Co.

- Est. Fall 2004 Nuclear and Solid-State Physics Origin
 - History: Custom Nuclear-Physics Detectors like NPX
 - Recently: Modular HPGe Systems like GeGI
- Complete Germanium Detector Manufacturing and R&D
 - Concept and Design
 - HPGe Crystal Growth
 - Detector Fabrication
 - System Integration
 - Software application
 - Sales & Service

2008 NPX (150 lbs.)

2017 GeGI-5 (15 lbs.)

10,000 ft² Manufacturing and R&D Facility in Knoxville, TN

Radiochemistry is Dynamic \rightarrow Things necessarily move NP Imager combines *Imaging, Spectroscopy and Time.*

¹⁷⁷Lu/¹⁷⁵Yb Column Separation at MURR

t = 0 - 10 minutes

NP Imager Technical Development Phase-II Prototypes

PHDS

NP IMAG

ZoomFactor[™]

ZF1

naging Detectors

NSCL Rare Isotope Imaging – NP Imager 102

Last year

Highlights of the recent year:

- 1. Continued work on prototype NP Imager systems
 - a. Built a gantry for NP Imager 102
 - b. Delivered NP Imager 102 and gantry to ORNL REDC, October 2019
 - c. Built new NP Imager 103 prototype
 - a. Modified the detector geometry
 - d. NP Imager 103 to NSCL for ⁴⁸Ca beam imaging measurements
 - i. Several novel isotopes observed during beam and after collection
 - ii. New Imaging observations ghosts
 - e. Coded Aperture Development a tool for enhanced imaging sensitivity

2. NP Imager Product Development

- a. Sold 3 (soon 4) Commercial NP Imager Systems
- b. NP Imager was featured at the RRMC in October 2019

Built a gantry for NP Imager 102

Built a gantry for NP Imager 102

Delivered NP Imager 102 + Gantry to ORNL REDC, October 2019

- 1. REDC Gathered ~ 15 people
- 2. Presentation of PHDS Co. Technology EH
- 3. Training Presentation DL (MK) NP Imager User Manual Refinements
- 4. REDC has been using their NP Imager for daily activities

Figure 6. The Aperture and Detector can be aligned at various ZoomFactor Settings using the cartry imaging plate. The left-hand using show the contiguration for ZoomFactors of 1 and 6. The right-hand usens show images made of the same source contriguration with ZoomFactors of 1 and 6. Note the black thumb screws rightly hold the aperture and detector in the plate.

20

²²⁷Th – ²³⁹Pu Separation

²²⁷Th

Made by ORNL REDC Radiochemists

NP Imager Process Modification:

Recirculating Beam Stop Harvester PHDS Co.: Desmond Longford (Radiochemist and NP Imager Product Beam strikes front face of blocker Manager), Ethan Hull (CEO, PI) (0.5 mm thick SS, 25mm Water) **MSU/NSCL:** Greg Severin, Katharina Domnanich, David Morrissey, Brad ⁴⁸Ca Thermocouple Sherrill Chloe, Colton, Wes Walker on exit tube vault wall LN2 cold trap molecular sieve Recirculation Pump Tank NP Imager 103

NSCL ⁴⁸Ca beam December 20, 2019

NP Imager 103 to NSCL for 48Ca beam imaging measurements NIL MILL

1.9 meters from the columns and gas trap

NP Imager 103 to NSCL for 48Ca beam imaging measurements

Compton Image

ø

Ready

Ready

đ ×

🔁 Imager - [20191222_065819.img] 🕌 File Acquire View Tools Options Show Window Help . 8 x 3857 Live: 0.951 Saved File PC:0 SC:0 PU: 0 Time: HRE (...) A TC:0 RJ:0 F2: 0.00 uR/hr Ø Temp(K): N/A 0 6 CPS: Threshold 0 - 100 % Distance(m) Events 93665 . Search Pixels Edit ROIs Switch to Polygon ROIs Show All Energy Windows Units Curies (Ci) 89 -89 + Isotope Energy (keV) ~ ROI Isotope Energy Count Activity (Ci) Radioactive Mass (g) Activity Conc. (Ci/g) Be-7 477.6 ✓ Sc-47 159.4 K-43 1274.5 Co-60 1332.5 K-43 1463.1 K-42 1524.7 Sc-44 1157.0 Sc-44m 271.1 ic-48 983.5 5c-48 1312.1 Na-24 1368.6 Q 941.7 Mg-28 /lg-28 400.6 Ar-41 1293.6 Ca-47 1297.1 1941.9 5-38 Ħ 1173.2 Co-60 511.0 Ca-47 807.9 1743 245 LOG Intervening Materials There are no items to show in this view. Material Density(g... Thick(cm) (24,4) - (21,11) **ROI Materials** ROI Material Density(g... Thick Ca-47 1297.1 Ar-41 1293.6 100 There are no items to show in this view. 10 < 1 200 1200 0 400 600 800 1000 1400 Ready A=122 1=2 Rel.Count=0.00

Ready

X=97 Y=9 Kel.Count=0.08

٥

-

Ready

Ready

Ghost Image !!

37 ROIs

Several ghost images at lower energies

Auto Detect helps avoid

Compton Images at higher energies

Radiochemistry back in the lab

Ready

Ready

Rank-19 MURA at PHDS

- PHDS mask design
 - Manufactured for PHDS Co. by <u>Brock Roberts at</u> <u>Electrodynamic</u>
- Data collected at PHDS with mask positioned on platform
 - *c* = 0.25 cm
 - f = 8 cm
 - z = 50 cm
 - *m* = 1.1905
 - Δα = c/f = 0.031 rad = 1.8°
 (1.6 cm at source plane)
 - $FOV_x = 29.7 \text{ cm} (\sim 33^{\circ})$ Image pixel size = 0.78 cm

Image Reconstruction

X Value

Mask + Anti-mask

Red Source Box:

Thank you

