Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

> Radiation Monitoring Devices, Inc. Watertown MA Michael R. Squillante, Principal Investigator Presented by Harish Bhandari

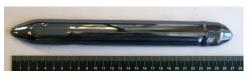
> > Key Contributors: Joshua Tower, Huicong Hong (RMD) Lindley Winslow, Joe Johnston (MIT)

This work has been supported by the US Department of Energy, Office of Nuclear Physics, SBIR grant No. DE-SC0015200

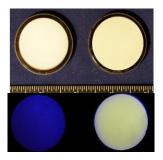
(Currently, we are between Phase II and Phase IIA)

Outline of Talk

- Radiation Monitoring Devices, Inc.
- Physics Motivation
- Crystal Growth (RMD)
 - $Na_2Mo_2O_7$
 - Li₂MoO₄
- Cryogenic Testing (MIT)
 - $Na_2Mo_2O_7$
 - Li₂MoO₄
- Plans

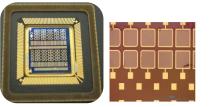


RMD Basic and Applied Research and Development


Materials Science

Scintillators

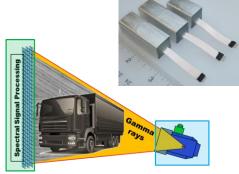
Semiconductors



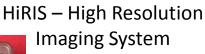
Imaging Screens

Sensors

APDs SSPMs Photosensors



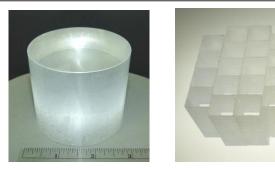
Wide Band Gap Geiger Photodiodes



Surgical Beta-Probe

Instruments & Systems

RadEye Detectors



Hermes G/n w/ isotope ID

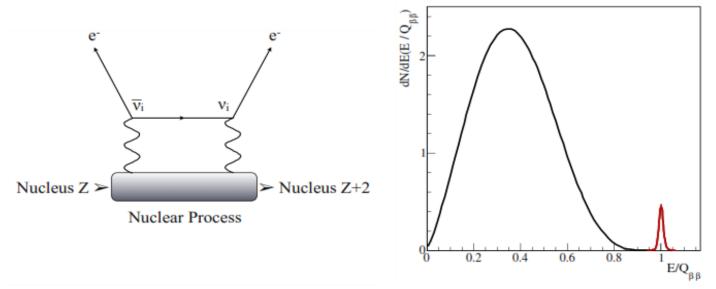
Robotic nuclear power plant concrete analyzer

RMD Commercial Products

∧▼ Target F500

3" CLYC Crystals CLYC Pillars

Scintillation detectors



Zetec ECT power plant probe

Hypothesized Process of Neutrinoless Double Beta Decay (0vββ) • Spectrum of electron energies

- Feynman diagram for neutrinoless double-beta decay through light Majorana neutrino exchange
- Spectrum of electron energies from double-beta decay.
- The red section at the endpoint Q indicates those from neutrinoless double-beta decay.

If **Οv**ββ exists, then the neutrino must be a Majorana particle (its own antiparticle)! - This would require changes to the Standard Model of Particle Physics

Candidate Isotopes for 0vββ Experiments

Г							
			end point	%			
	element	isotope	energy (MeV)	abundance			
ſ	Са	48	4.271	.187			
ſ	Nd	150	3.367	5.6			
	Zr	96	3.35	2.8			
\langle	Мо	100	3.034	9.7			
	Se	82	2.995	8.8			
	Cd	116	2.802	7.5			
ſ	Те	130	2.527	24.6			
	Хе	136	2.457	8.9			
	Ge	76	2.039	7.8			

 100 Mo half-life = 7.8×10¹⁸ y 82 Se half-life = 0.97×10²⁰ y

Requirements for isotope

- 1. Must decay by double beta process.
- 2. Good natural abundance and ability to enrich.
- High endpoint energy (above 2.6 MeV ²³²Th gamma ray).
- 4. Major constituent in a scintillating crystal.

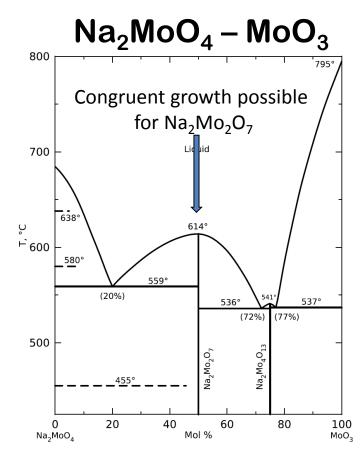
¹⁰⁰Mo has promising properties!

Scintillating Bolometers are needed for better particle discrimination and background reduction in next generation experiments.

Na₂Mo₂O₇ (NMO) and Li₂MoO₄ (LMO) Synthesis

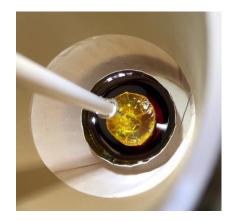
- 1. MoO₃ 99.9995% + (Na₂CO₃ 99.997% or Li₂CO₃ 99.99%) High Purity Powders
 - $2 \text{ MoO}_3 + \text{Na}_2\text{CO}_3 \rightarrow \text{Na}_2\text{Mo}_2\text{O}_7 + \text{CO}_2$
 - $MoO_3 + Li_2CO_3 \rightarrow Li_2MoO_4 + CO_2$
- 2. Mix powders in a plastic bottle overnight on a roller
- 3. Press the mixture in a Teflon piston jig with a cold press to form a compact and dense mixture puck
- 4. Place and melt the puck inside a platinum crucible at 650C
- 5. Repeat steps 1-4 until crucible is sufficiently full

Puck generated



Puck melted in Pt crucible

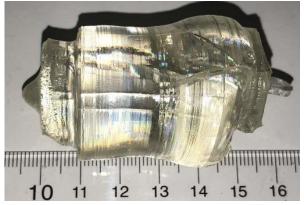
Na2Mo2O7 Growth


Structural phase change for Na₂MoO₄

Petrosyan *et al., Russ. J. Inorg. Chem. (Engl. Transl.)*, **22** [10] 1542-1544 (1977).

SBIR/STTR Exchange Meeting, August 14, 2019

Czochralski growth method used


First growth run made using Pt wire as a seed.

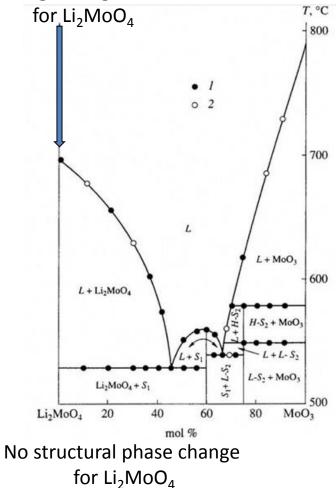
Initial crystal was cut into seeds for subsequent growth runs.

Seeded Cz Growth of Na₂Mo₂O₇

As-grown Ingot

Samples cut and polished for evaluation

Good Optical Transmission


- Colorless transparent crystals are needed for best scintillation light yield.
- High purity and good stoichiometry are crucial for colorless crystals.

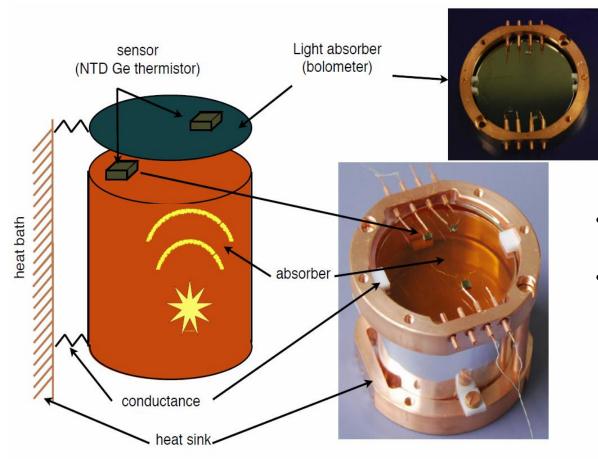
• Good quality crystals can be grown, but cracking is common.

Cz Growth of Li₂MoO₄

Congruent growth

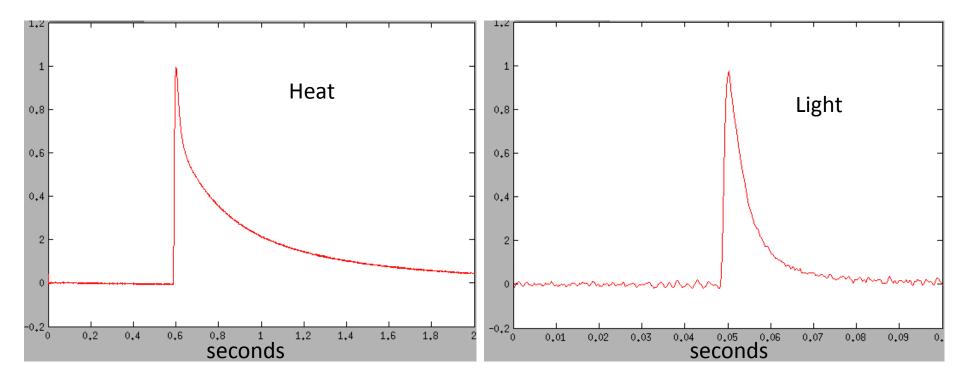
RMD RMD RMD RMD R RMD RMD RMD RMD R RMD RMD

30 x 30 x 20 mm sample used for cryogenic testing


LMO is less prone to cracking more conducive to manufacturing, as compared to NMO.

Solodovnikov et al., Russ. J. Inorg. Chem., Vol. 44, No. 6 1999

Cryogenic Testing of Scintillating Bolometers

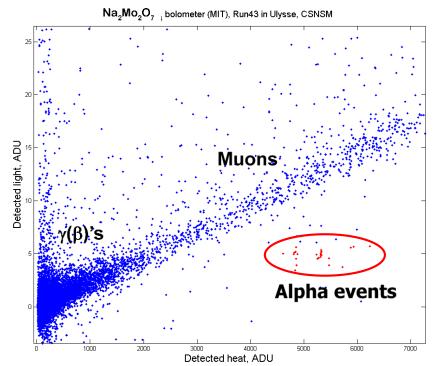

Above ground cryogenic testing at CSNSM in Orsay, France

- Samples held at ~ 20 mK
 for multi-day testing.
- Light and heat pulses measured separately.

Mean light and heat pulses from LMO

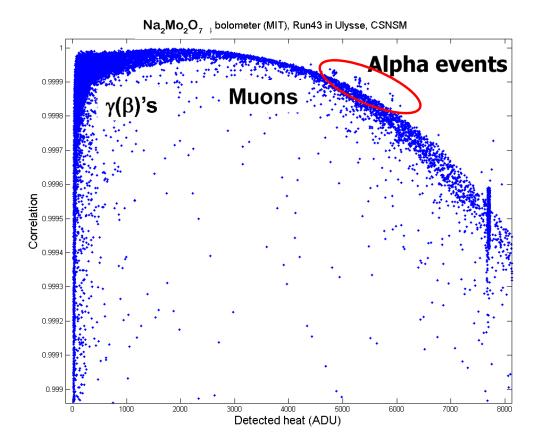


Light pulse is ~ 100x faster than heat.



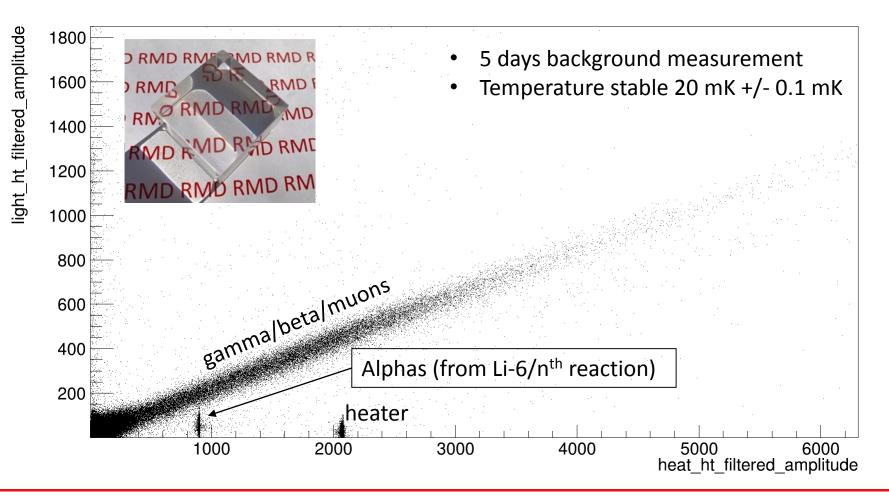
Good Particle Discrimination in Light-vs-Heat Plot

Na₂Mo₂O₇ mounted in cryogenic sample holder with Ge NTD devices.

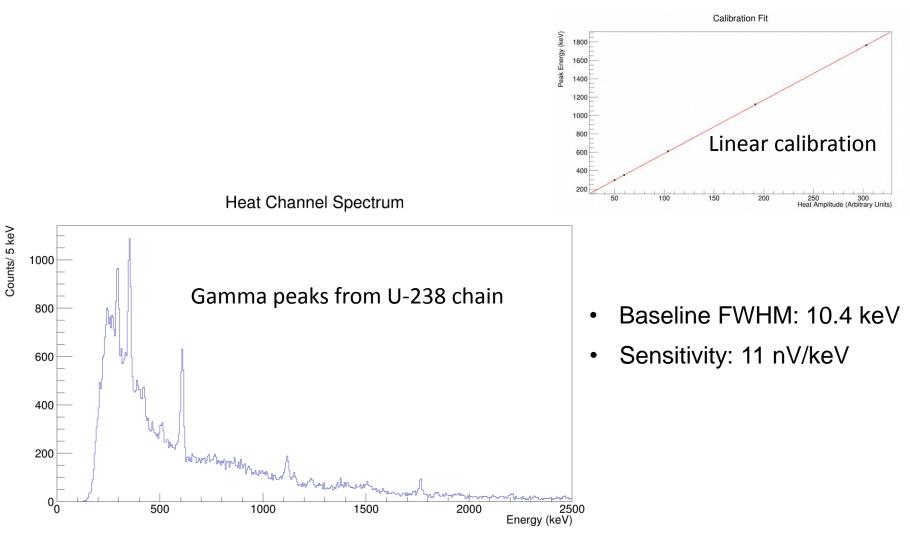

Na₂Mo₂O₇

- Alpha events come from U and Th decay chains from internal crystal background.
- Alphas are at energy similar to expected 0vββ decay, so discrimination is crucial.
- Muon events will be shielded in underground laboratory.

Pulse Shape Discrimination Possible with Na₂Mo₂O₇



Light versus Heat Chart for LMO


Good separation of alphas!

light_ht_filtered_amplitude:heat_ht_filtered_amplitude {heat_ht_correlation>0.93&&light_ht_filtered_amplitude>0}

Calibrated Heat Spectrum for LMO

LMO Light Channel Spectrum

Light Channel Spectrum

LMO Internal Background Limits Alpha Contamination Limits

Chain/ Contamin ation	Nuclide	Q-Value (keV)	Counts	Limit on Activity (mBq/kg)	CLYMENE LMO-Small (mBq/kg)
Th-232	Th-232	4081.6 ± 1.4	4	<0.24	<0.5
	Th-228	5520.08 ± 0.22	2	<0.12	<0.55
U-238	U-238	4269.7 ± 2.9	5	<0.31	<0.72
	Ra-226	4870.62 ± 0.25	-	<0.12	<0.50
	Rn-222	5590.4	2	<0.12	-
	Po-218	6002.4	1	<0.07	-
	Po-210	5407.45 ± 0.07	6	<0.38	<1.7
Pt-190	Pt-190	3252 ± 6	2	<0.12	-

- · Feldman-Cousins tables are used to set 90% limits
- · Count limits are converted to activity limits with the exposure of **0.22 kg*days**
- Ra-226 limit is set by assuming secular equilibrium with Rn-222
- Comparison is to CLYMENE (Exposure 0.039 kg*days)
 - · Accounting for different exposures, the two sets of limits are comparable
 - arXiv:1801.07909 [physics.ins-det]

- Single crystals of Na₂Mo₂O₇ and Li₂MoO₄ were grown by Czochralski.
- Colorless transparent crystals were obtained.
- Cryogenic testing of scintillating bolometers showed good light output, good alpha separation, and low internal radioactivity.
- On-going work will be focused on increasing sample size, reducing internal background, and incorporating enriched ¹⁰⁰Mo for LMO Crystals.
 - Objective to become a fully qualified supplier for the CUPID project.

