# Applied Nanotech, Inc.

#### **Graphene Backing for Radioisotope Targets**

Igor Pavlovsky, PhD Applied Nanotech, Inc. 3006 Longhorn Blvd #107 Austin, TX 78758

August 7-8, 2018 DoE SBIR-STTR Meeting Washington, DC



### Outline

- Who is Applied Nanotech (ANI)?
- Prior effort using graphene
- Problem need for radioisotope targets
- Approach using graphene material
- Phase II and future effort

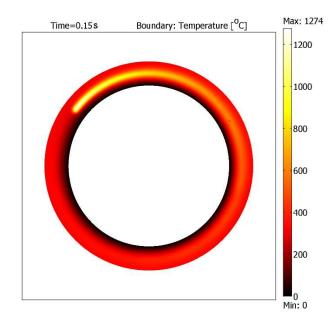
#### About ANI



- Located in Austin, Texas
- Founded 1988, publicly traded
  - In 2014, merged with Nanofilm (Cleveland, OH), both are now subsidiaries of PEN Inc.
    - Nanotechnology R&D emphasis:
    - 1) Graphene foils and films
    - 2) Printed Electronics
    - 3) Sensors

- 4) Thermal Management
- PEN has staff of 20+ employees, ANI has 6 staff

#### **Prior ANI Effort Using Graphene**


- Graphene based cold cathodes for flat panel displays
  - US Pat. 6,819,034 (2000, Pavlovsky) "Carbon flakes ... can be as thin as one or more layers of sp2-bonded carbon atoms (graphite layers)"
- Isotopic Carbon Graphene Foil Targets
  - DoE grant DE-SC0015140: The goal of this program is to develop <sup>13</sup>C and <sup>14</sup>C carbon targets for nuclear experiments
  - Fabricated <sup>nat</sup>C graphene targets, while commercially available <sup>13</sup>C did not graphitize
  - Low risk approach for <sup>14</sup>C that has high levels of impurities is to print 3-5 mg/cm<sup>2</sup> films using a binder (2% wt.)
  - Test run complete at ANL in June 2018

#### **Prior ANI Effort Using Graphene**

#### Graphene Stripper Foils for FRIB

- DoE grant DE-SC0000852: The goal of this program was to develop a high thermal conductivity, rigid, large area, uniform graphene foil for charge stripping in accelerators, capable of having long lifetime
- Fabricated by filtration of reduced GO. Size up to 5", typical thickness 0.1 to 1.0 mg/cm<sup>2</sup>, can be cut per order
- Longer lifetime (up to 2x) in charge stripping applications compared to conventional carbon foils

#### **Prior ANI Effort Using Graphene**





- The foils are smooth and have a metallic luster
- The foils have a layered structure
- Foils are robust, easy to handle and survive express shipping

### Problem

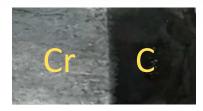
A variety of isotope targets are needed in NP research

- Need for robust backing made of a low Z material
- Targets of interest: refractory metals, targets with limited amounts of isotopes available (mg quantities), both stable and radioactive isotopes, B-11, etc.
- Effective methods of target fabrication are needed
- This program: Graphene Backing for Radioisotope Targets
- DoE Grant DE-SC0017208, currently Phase II (Topic 26(e) -Specialized Targets for Nuclear Physics Research)

#### Approach

- Use thin graphene backing films for target fabrication by magnetron sputtering: deposit enriched B-11 carbide
- Use graphene as a cathode for electroplating of isotopes: prepared Cr(III) bath to fabricate <sup>nat</sup>Cr plated target
- Use graphene as a matrix for composite targets where the target material is in the nanoparticle form. <sup>nat</sup>Ir nanoparticles were synthesized and used to fabricate <sup>nat</sup>Ir target with up to 50% target material mass loading.

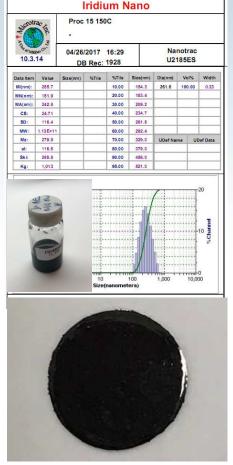
#### Phase I Results


- 1. Graphene backing for target material deposition
  - Fabricated 3" enriched Boron-11 carbide sputtering target
  - Prepared graphene substrates
  - Deposited 200nm <sup>11</sup>B<sub>4</sub>C on 0.1mg/cm<sup>2</sup> graphene: electrostatically attracted to substrate holder
  - Deposited 200nm <sup>11</sup>B<sub>4</sub>C on 0.5mg/cm<sup>2</sup> graphene: substrate survived the film deposition in plasma



#### Phase I Results

- 2. Graphene backing for electroplating
  - Prepared 0.5mg/cm<sup>2</sup> graphene substrates (cathodes)
  - Formulated Cr(III) chloride electroplating bath and tuned a plating system
  - Plated 1mg/cm<sup>2</sup> natural Chromium targets on graphene substrates








#### Phase I Results

- 3. Graphene matrix with nanoparticle target materials
  - Prepared <sup>nat</sup>Ir nanoparticles by reduction of H<sub>2</sub>IrCl<sub>6</sub> in aqueous solution
  - Pressure filtration of graphene and target material aqueous dispersions
  - Prepared 2mg/cm<sup>2</sup> free-standing natural Ir targets in graphene matrix at 50%wt. loading



#### Phase II Goals

- Objective 1: Demonstrate refractory metal targets (Nb, Re\*) in graphene matrix with metal mass loading of 50% or greater
- Objective 2: Demonstrate sputtering deposition of <sup>11</sup>B<sub>4</sub>C films on graphene backing with mass area density not exceeding 0.1 mg/cm<sup>2</sup>
- Objective 3: Demonstrate W and Re\* targets with area density ranging from 0.5 to 5 mg/cm<sup>2</sup> fabricated by spin coating over graphene backing
- Objective 4: Demonstrate electroplated <sup>52</sup>Cr isotopic targets with area density up to 1 mg/cm<sup>2</sup>.
- Objective 5: Demonstrate <sup>nat</sup>Cu targets with area density up to 1 mg/cm<sup>2</sup> electroplated over graphene foils

\*Excluded the initially proposed Mo target development per DoE request

#### Phase II Schedule

| Task or Milestone                                                  | M1 | M2 | M4 | M6 | M8 | M10 | M12 | M14 | M16 | M18 | M20 | M22 | M24 |
|--------------------------------------------------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| MS1 - Program kickoff meeting                                      | Х  |    |    |    |    |     |     |     |     |     |     |     |     |
| Task 1: Obtain target materials, chemicals, prepare graphene films |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 1a. Obtain materials, chemicals, components                |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 1b. Fabricate graphene films for the following tasks       |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS2 - All materials needed for the program are available           |    |    |    | Х  |    |     |     |     |     |     |     |     |     |
| Task 2: Fabricate W targets by spin coating over graphene          |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 2a. Fabricate spin-coated W target on graphene             |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 2b. Fabricate spin-coated Mo target on graphene            |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS3 - Spin coated targets are fabricated                           |    |    |    |    | Х  |     |     |     |     |     |     |     |     |
| Task 3: Electroplating Cu and Cr-52 targets                        |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 3a. Electroplate Cu target on graphene film                |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 3b. Optimize natCr electroplating conditions               |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 3c. Electroplate Cr-52 target on graphene film             |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS4 - Cr-52 target electroplating complete                         |    |    |    |    |    |     | Х   |     |     |     |     |     |     |
| MS5 - Year I Technical Report Complete                             |    |    |    |    |    |     | Х   |     |     |     |     |     |     |
| Task 4: Sputtering of B-11 carbide on 0.1 mg/cm2 graphene          |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS6 - B-11 carbide deposited on thin graphene film                 |    |    |    |    |    |     |     |     | Х   |     |     |     |     |
| Task 5: Refractory metal targets fabrication                       |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 5a. Fabricate W target in graphene matrix                  |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 5b. Fabricate Nb target in graphene matrix                 |    |    |    |    |    |     |     |     |     |     |     |     |     |
| Subtask 5c. Fabricate Mo target in graphene matrix                 |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS7 - Refractory metals targets fabricated                         |    |    |    |    |    |     |     |     |     |     |     |     | X   |
| Task 6: Target fabrication per ANL request                         |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS8 - Order fulfilled                                              |    |    |    |    |    |     |     |     |     |     |     |     | X   |
| Task 7: Program Management                                         |    |    |    |    |    |     |     |     |     |     |     |     |     |
| MS9 - Final Report complete                                        |    |    |    |    |    |     |     |     |     |     |     |     | Х   |

## Phase II Deliverables

- Deliverables include:
  - Progress Reports (RPPRs) and Final Report
  - Deliverables to be evaluated at ANL:
    - <sup>11</sup>B<sub>4</sub>C films on graphene backing
    - spin coated W and Re targets
    - Nb, Re nanoparticle targets in graphene matrix
    - Electroplated <sup>52</sup>Cr isotopic targets and <sup>nat</sup>Cu targets
- Delivered to date:
  - Ir, Re, WO<sub>3</sub>, HfO<sub>2</sub> natural isotopic targets in graphene matrix with ~50% mass loading
  - Re nanoparticles fabricated in house, other materials obtained commercially

#### **Future Plans**

- Test Ir and Re targets in graphene matrix at ATLAS
- Fabricate specialty isotopic targets for NP community
- Develop methods and targets for production of radiopharmaceuticals
- Possible application: graphene windows for X-ray sources and low energy particle beams

#### **Contact information**

#### **Applied Nanotech Inc.**

3006 Longhorn Blvd., Suite 107 Austin, TX 78758 www.appliednanotech.net Igor Pavlovsky, Chief Scientist

(512) 339-5020 x131 (office)

ipavlovsky@appliednanotech.net

