

How to reduce costs and power usage in front-end electronics by implementing a system-on-chip approach for data acquisition.

Isar Mostafanezhad, Ph.D.

Founder and CEO, Nalu Scientific, LLC

Aug 7, 2018

DOE Phase II SBIR Exchange Meeting

DE-SC0015231 Funded by DOE Office of NP

About Nalu Scientific

Mission statement:

Design house for DOE electronics needs with commercial grade support

Personnel:

6 engineers and experimental physicists

40+ years combined experience

Tools:

Commercial grade ASIC and electronic design tools

Funding:

DOE SBIRs and contracts

ASIC Design
Mixed signal System-on-Chip
Power optimization
Full suite commercial grade Cadence license and
server + design kits
Hardware Design
FPGA, VHDL development
Implementation
Bring up and debugging
Complex multi-layer boards
Expertise in:
Fast time of flight measurements
Readout electronics for HEP/NP

Mano Innovation Center

2800 Woodlawn Dr. Ste #240 Honolulu, HI 96822 <u>info@naluscientific.com</u> +1 (888) 717-6484

Waveform Digitizer SoCs for Single Photon Time of Fight Detection: Compact, Low Cost, Low Power

1. Various Chips:

- Event based digitizer+DSP ٠
- 4-32 channel scope on chip •
- 1-10 Gsa/s, 12 bit res. .
- Low SWaP
- Low cost
- User friendly

- **2. Integration:** Detectors: •
 - PMT
 - SiPM

Main application: Particle collider experiments

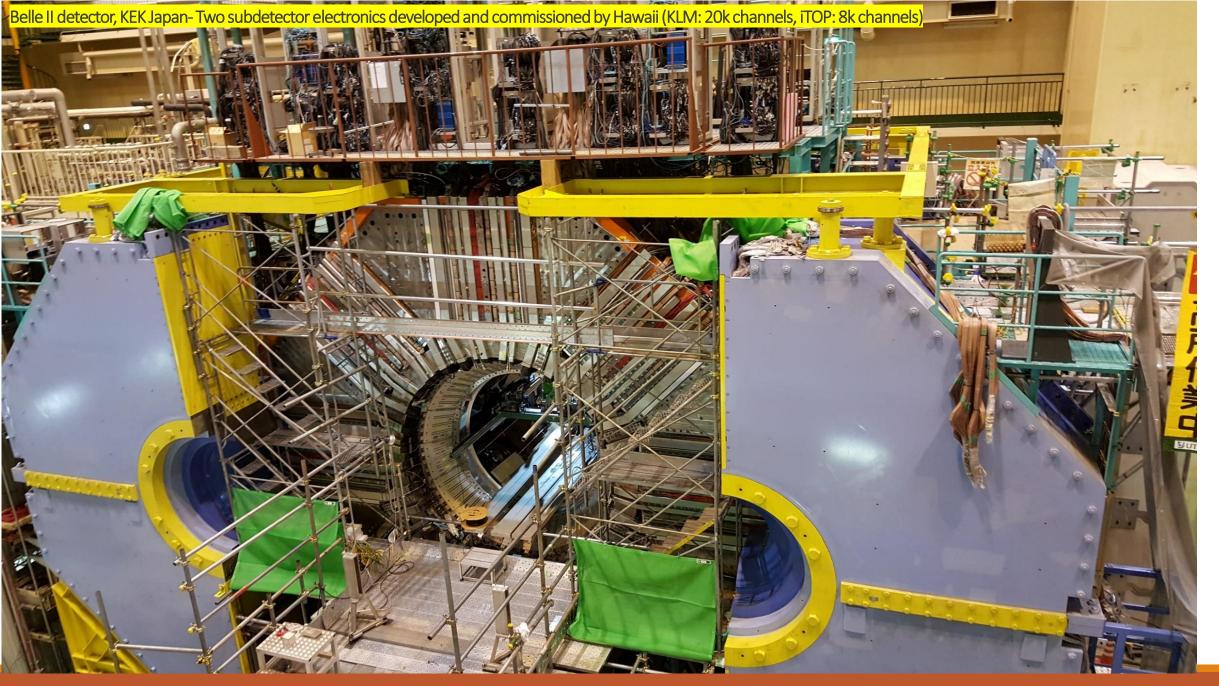
- 3. Other applications:
- Low light detection
- Picosecond timing

NALU SCIENTIFIC, LLC

SBIR Data Rights.

Design and Fabrication of the ASoC: A System-on-Chip Data Acquisition System

Problem:


 We need new developments in instrumentation electronics with significantly improved energy, position, timing resolution, sensitivity, rate capability, stability, dynamic range, durability, pulse-shape discrimination capability, and background suppression.

Proposed Solution:

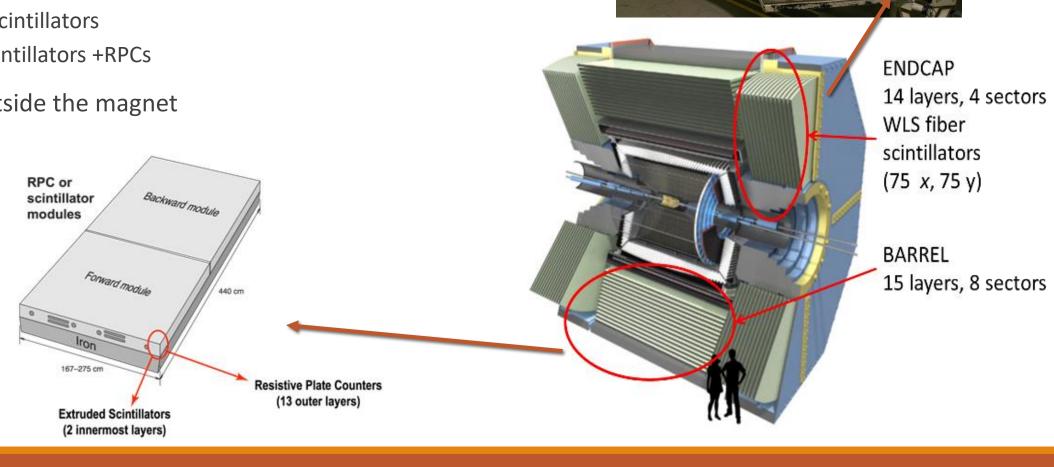
Analog to digital converter System-on-Chip (ASoC)

Benefits:

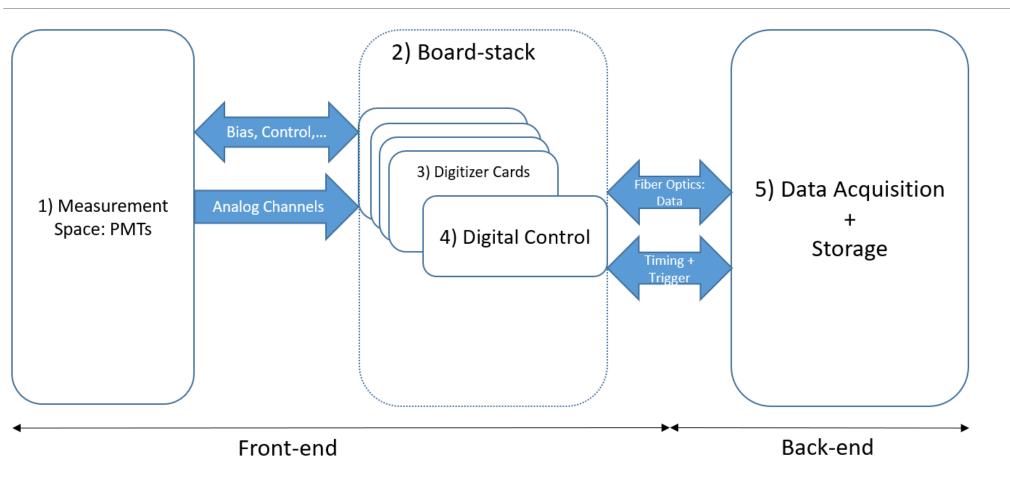
- High integration
- Analog and digital processing on a single chip
- High resolution waveforms at low cost and low power
- Feature extraction and background suppression in the front-end

2017 IEEE NSS-MIC, N-05 — Analog and Digital Circuit I

Nalu Scientific, LLC


Belle II: KLM Scintillator Upgrade 20k+ channels at 1 GSa/s ea.

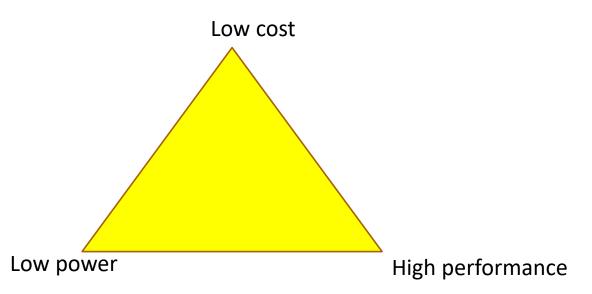
KLM detectors:


Belle II

- Endcap: scintillators
- Barrel: scintillators +RPCs

Located outside the magnet

Lesson learned 1: Classical HEP/NP Experiment

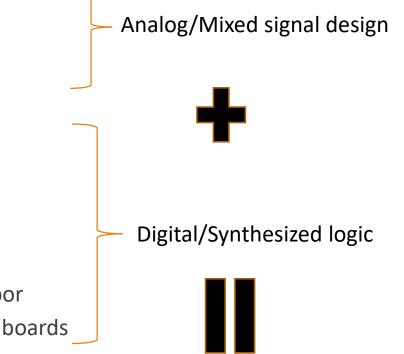

Lessons learned 2: Opportunities

- Rad hard
- High performance
- Low cost
- Low power
- Highly integrated
- User friendly

Optimize to get to sweet spot = 2-3x gain

Solution: new design/SoC integration = <u>10 x gain</u>

Nalu Scientific Data Acquisition Systems


Benefits of Higher Integration - SoC

•Analog memory:

- Sampling always on (1-10 Gsa/s), but at low power
- Digitize only Region of Interest (ROI)
- Long analog buffer -> suitable for large experiments

• Digital processing:

- Per channel cost reduction by a factor of 4
- Relax thermal design by 40% reduction in power dissipation
- Trigger time-stamping at the front-end
- Eliminating the need for costly high-end FPGAs
- User friendly: substantially reducing the FPGA firmware development labor
- Reduced complexity and design and cabling effort/cost for the front-end boards

SBIR Project: ASoC- System on Chip

Compact, high performance waveform sampling- Funded Phase II

			-	
	-	 		
tronubu				
	- 5		-	
	Г			
	-	 		

Fabricated ASoC Rev 1 die.

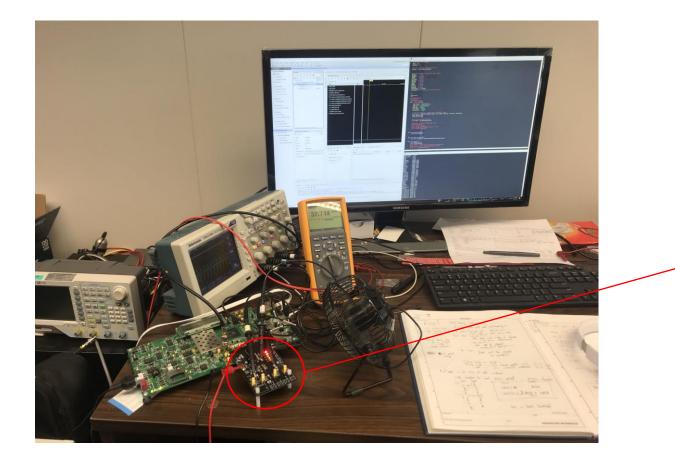
Spec	
Sampling rate	2-4 Gsa/s
ABW	0.9-1.5GHz
Depth	32k Sa
N channels:	8-32
Fab	250nm CMOS

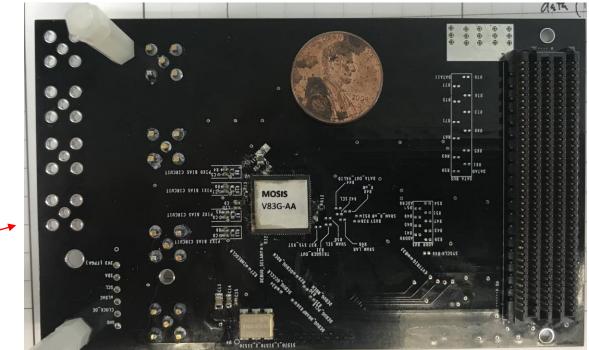
Key Contribution:

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available
- 5mm x 5mm die size

Funded DOE Phase II Project

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.


Nalu Scientific- ASIC developments


NALU SCIENTIFIC, LLC-

ASoC Under test!

Results to be published at conferences and journals in the next 2-3 months.

ASoC Evaluation FMC Card

Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Integration	Built-in	Readout	Available Date
ASoC	3-5	0.8	32k	4-8	35	SoC	Pre amps	Parallel	Aug 2018
Siread	1-3	0.7	4k	64	80-120	SoC	Amp, bias	Fast serial	May 2018
AARDVARC	6-10	2.5	32k	4-8	4-8	SoC	Pre amps	Fast serial	Sep 2018

- ASoC: Analog to digital converter System-on-Chip
 - Rev 1 under test Eval card available
- **SiREAD**: SiPM specialized readout chip with bias and control
 - Rev 1 under test
- **AARDVARC**: Variable rate readout chip for fast timing and low deadtime
 - Rev 1 under test Phase II

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

Acknowledgements

- •DOE Office of Science
- •DOE SBIR/STTR Program
- •DOE Office of NP
- •From the team at Nalu Scientific: Thank you!