DOE-NP
SBIR/STTR Exchange Meeting

Radiation Tolerant SOI CMOS Detectors
DE-SC0002421 & DESC0004237 (topic 49d)
Dr. Manouchehr Farkhondeh

George M. Williams
VOXTEL INC.

"Detector funding in Europe is good; in Japan, modest; but in the US, totally inadequate."
Chris Damerell of Rutherford Appleton Laboratory and chair of the Detector Panel, SNOWMASS 2005
About Voxtel

Corporate Offices / Voxtel Opto (Beaverton, Oregon)

• Contract Administration
• Opto Products Group
 – **Detectors:** InGaAs and silicon photodiodes, avalanche photodiodes (APDs), photoreceivers, and focal plane arrays
 – **Integrated Circuits:** Readout integrated circuits (ROICs) for imaging, LADAR, and radiation detection
 – Single-Photon and Time-Resolved Detectors and Instruments
 – Electro-Optic Systems Engineering

Voxtel Nano (Eugene, Oregon)

• Nano Products Group
 – Colloidal Semiconductor Quantum Dots (PbS, CdSe, InP, SnTe, CIS, CZIS, etc.)
 – Rare-earth-doped Nanoparticles (ZnS, YVO\(_4\), LaF\(_3\), etc.)
 – Ligand Design and Custom Surface Functionalization
 – Up- and Down-Conversion Optical Devices
 – Security Inks and Covert Taggants
 – Nanocrystal-sensitized Detectors and Solar Cells
 – Continuous Flow Reactor Nano-factories
• Analytical Facilities
 - SEM, HRTEM, VIS-NIR, PL, UPS/XPS, TGA, etc
The Problem Facing Functional Silicon Detector Developers

<table>
<thead>
<tr>
<th>Detector Requirements</th>
<th>Sub-micron CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analog/ Mixed signal</td>
<td>1. Digital</td>
</tr>
<tr>
<td>2. High resistivity (4 kΩ/cm)</td>
<td>2. Low resistivity (5 Ω/cm)</td>
</tr>
<tr>
<td>3. Thick electrically/optically active layer</td>
<td>3. Thin electrically active layer</td>
</tr>
<tr>
<td>4. High biases (5 VDC → 50+ VDC)</td>
<td>4. Low voltage (0.9– 1.8 VDC)</td>
</tr>
<tr>
<td>5. Thick, thermal oxides with ultra-low leakage</td>
<td>5. Thin high k+ oxides</td>
</tr>
<tr>
<td>6. Large, high linearity capacitors</td>
<td>6. Standard process flows</td>
</tr>
<tr>
<td>7. Full wafer integration</td>
<td>7. Full reticle integration (22 x 22 mm²)</td>
</tr>
<tr>
<td>8. Custom materials, process flows and implants</td>
<td>8. No variability in materials or process</td>
</tr>
<tr>
<td>9. < 5” wafers available from R&D & MEMS fabs</td>
<td>9. 300 mm (+) wafers</td>
</tr>
<tr>
<td>10. Trained domestic work force</td>
<td>10. Trained work force</td>
</tr>
</tbody>
</table>

Today’s CMOS processes are increasingly antithetical to high performance detector processing, and high-volume detector manufacturing capacity in the US is rapidly decreasing
Potential Opportunities for Detector Developers

<table>
<thead>
<tr>
<th>Via-less and TSV 3D Wafer Stacking</th>
<th>Wafer Thinning</th>
<th>Through BOX SOI Wafers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vialess Stack</td>
<td>Wafer Thinning</td>
<td>SIT Through Vias</td>
</tr>
<tr>
<td>Die to Wafer Bond</td>
<td>Wafer to Wafer Bond</td>
<td>SOT</td>
</tr>
</tbody>
</table>

Exciting Advances Continue To Drive CMOS Advances. However,

- Back-end of Line (BEOL) processes largely inaccessible to detector developers
 - developed on 200+ mm wafer tooling (not widely available for custom development)
 - require full wafers, not multi-project chips (0.18 μm reticle costs w/first lot is ~$480K)
 - when wafer stacking is used, twice the cost (2x $400K / 0.18 um masks)
- No sources of SOI CMOS through-BOX Vias
Detector Solutions Available

CONVENTIONAL CMOS

Backside (BSI) CMOS

(#1) BSI Silicon W2W Bonding

(#2) Through SOI BOX Via

APPROACH #1
Stacked ROIC Circuit/Detector Layers
- High resistivity Si (Ge) detector layer
- W2W allows thick Si layers
- TSV - reduces fill factor
 - only good for thin Si

APPROACH #2
Monolithic with Detector in SOI Wafer
- Use SOI Substrate with low-rho top layer and high-rho bottom layer
- Requires through BOX via
- Self-aligned process, no 1um wafer alignment
Domestic (Hybrid) SOI-CMOS Process

Bulk Si Islands can be used for detection

BOX minimizes SET and increases radiation tolerance

Trench Isolation Provides Electrical/Optical Isolation

Both Pwell and Nwell transistors available for circuits

P+ implant useful as substrate contact

Jazz/Tower Semiconductor CA18HJ Process

- bulk transistors fabricated on SOI wafers
- transistors isolated from one another with trench isolation (TI)
- SOI device layer is thick enough (1.4 µm) to prevent ‘back-gating’ of transistors and thin enough to minimize radiation-induced ionizing charge.
- buried implant between the BOX and the transistor layer prevents ‘back-gating’
- BOX is a good etch stop for back-thinning
- however, 1.4 um not thick enough for many applications
DOE 06157:
UV-Blue Enhanced Silicon Photomultipliers for Scintillators

Problem

Silicon Photomultipliers (SiPMs) have been proposed as photomultiplier tubes (PMTs) replacement for NP and medical application, but

- low detection efficiency and fill factor
- high, variable (inter and intra device) dark count rates
- not sensitive to scintillator output
- too expensive
- fabricated on old generation CMOS (now R&D) fabs
- large resistance/capacitance, which limit timing
- external ADC and functional circuits

Solution

Digital SPADs made using SOI

1. thin SOI layer for UV-VIS (particle?) detection
2. trench isolation electrically/optically isolated micro-cells
3. isolated SOI transistors used to increase detector functionality
 - bit enable, active quenching, uniformity correction, timing, counting
4. radiation tolerant
Improved Silicon Photomultiplier Technology: SOI CMOS Digital Single Photon APD (DSPAD)

SOI Layer used for detectors
- SOI BOX layer used for thinning
- Buried p+ implant for substrate contact

Geiger Mode (Gm) Si APDs formed in SOI layer
- Deep trench isolation (DTI) avoids optical cross-talk
- Layer fully depleted for fast response

Each SPAD microcell includes:
- Cell enable/disable
- Active quenching
- Programmable pulse comparator and holdoff
- 4-bit APD bias non-uniformity

Each Pixel Includes
- Digital Counter (16-bit) and 200-ps time stamp in each pixel
Back-thinning SOI Wafers

Back-thinning DSPAD Wafers

Back-thinning of wafers
Semiconductor Tracking Detectors
DOE NP SBIR Contract # DE-SC0002421

Statement of Problem

Existing CCD Trackers are:
• too slow,
• too expensive,
• too thick,
• data bandwidth intensive.

and CMOS imagers are:
• lack sensitivity,
• small detective cross section,
• not rad hard.

Approach

• 3D Wafer stacking of detector layers to CMOS
• Small pixel / thin silicon for resolution/occupancy
• Record time –of-flight (tof) and amplitude
• Use sparsified data readout
• Use stitching to photo-compose large imagers
• Enclosed transistors w/SOI for radiation tolerance

Program Contacts

Primary Investigator
George Williams
georgew@voxtel-inc.com
971-223-5646 x 112

Prog. Manager
Adam Lee
adaml@voxtel-inc.com
971-223-5646 x 128

DOE TPOC
Manouchehr Farkhondeh
manouchehr.farkhondeh@science.doe.gov
301-903-4398
Specifying Tracking Focal Plane

Detection efficiency analysis, assuming single event storage per pixel.

STN calculated as a function of detector thickness (read noise: 22 e−, pixel pitch: 15 µm; integration: 1 ms)

- Pixel sizes of 15 µm have detections efficiencies larger than 99%, even with occupancies in excess of 0.15 events/bunch/mm²
- About 12-um thick detector WITH LOW AMPLIFIER NOISE achieves sufficient STN
 - thin silicon minimizes dark current
 - thin detectors tightens detector ring diameter
 - small pixels with thin detector layer reduces multiple pixel events
Vertex Detector: Pixel Block Diagram

- Each pixel uses direct integration followed by an auto-calibrated comparator.
- Output of comparator samples the event ramp signal.
- Time-of-arrival and amplitude data read out between frames.
- Readout uses pixel-, column-, and chip-level CDS to reduce fixed-pattern noise sources on the ROIC.
- Sparse scanning and pixel readout,
 - column read out if column flag indicated pixel “hit”

Vertex Detector: Sparse Readout Architecture

Vertex Detector: 15 µm Pixel
- in-pixel comparator is 70% of the pixel area
Via-less Wafer-to-Wafer Bonding

Starting Materials:
- SOI detector wafer has global Al deposition; CMOS ROIC wafer is planar with last VIA up to surface.
- CMOS ROIC wafer (Si)

Step 1: CMOS ROIC wafer receives a global seed metal (Al) deposition. SOI detector wafer already has global seed metal.

Steps 2-4: Both wafers pattern/plate DBI metal (Ni), etch seed metal, and receive oxide deposition/planarization.

Steps 5: Bond SOI detector and ROIC wafers at room temperature following preparation with NH₄OH solution.

Steps 6-7: Grind away silicon handle wafer of SOI within 50 μm of BOX. Remove remaining Si handle and BOX using wet etch process.

Steps 8-9: Remove Si material above CMOS ROIC bond pads. Open SiO₂ passivation above ROIC pads. Package device.

Bonded Detector
- Standard SOI CMOS ROIC wafer (bottom),
- High-resistivity silicon detector (top)
- Wafers bonded using direct-oxide bond
- <15-μm pitch; < 20-um total thickness.

Enclosed-layout transistors (ELTs).
- Leakage paths are removed using the enclosed layout with p+ guard rings,
- Radiation tolerant
Photocomposition of Large Areas via Stitching

Reticle Block Layout (22 mm x 22 mm)
- Block A: Pixel array (1024 x 1024)
- Block B: Analog readout / Horz. scanner
- Block C: Vertical scanner
- Block D: Digital control
- Block E: Top left pixel array corner
- Block F: Top pixel bussing
- Block G: Top right pixel array corner
- Block H: Right pixel bussing
- Block I: Global biasing

Layout of Reticle

Photocomposition of Large Arrays is used for Fill Wafer Integration.

CMOS Reticles are only about 22 x 20 mm², so larger detector areas must be decomposed into structural components and photocomposed - allows design to be redeployed for various applications without $500K mask investment
Backthinning Bonded Wafers

Bonded VX-802 wafer before thinning
- 200-mm ROIC wafer bonded to 150-mm detector wafer
- Detector layer 20 um thick

Bonded wafers after thinning
- Detector mesas formed and bond pad openings etched

Zoom of device (large square) in wafer form.
- Gray areas are detector mesas
 - Small pads in brown areas are the bond pads.

- **Wafer bonding with face-to-face Via-less interconnection (Ziptronix)**
- **150mm high resistivity silicon detector wafer**
 - Surface functionalized with bond metal and oxide treatments
- **SOI Detector layers thinned (down to BOX layer) to reveal detectors**
 - Device bonded to backside of pads revealed after etch
VX-802 Performance Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>pixels: 960 x 448</td>
</tr>
<tr>
<td>Detector Area</td>
<td>mm: 16 x 7.5</td>
</tr>
<tr>
<td>Butability</td>
<td>-</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>μm: 15.0</td>
</tr>
<tr>
<td>Detector Thickness</td>
<td>μm: 20.0</td>
</tr>
<tr>
<td>Detector Capacitance</td>
<td>fF: 1.2</td>
</tr>
<tr>
<td>Dark Current Density</td>
<td>nA/cm²: 3.5</td>
</tr>
<tr>
<td>Dark Current</td>
<td>fA: 7.9</td>
</tr>
<tr>
<td>Detector Polarity</td>
<td>P-on-N</td>
</tr>
<tr>
<td>Event Rate</td>
<td>/bunch/mm²: 3.00E-02</td>
</tr>
<tr>
<td>Max Bunch Rate</td>
<td>ns: 337.0</td>
</tr>
<tr>
<td>Bunches per Train</td>
<td>bunches: 2820</td>
</tr>
<tr>
<td>Frame Dead Time</td>
<td>ms: 199</td>
</tr>
<tr>
<td>Particle Charge</td>
<td>e-: 1000.0</td>
</tr>
<tr>
<td>Integration Time</td>
<td>ms: 1.0</td>
</tr>
<tr>
<td>Pixel Noise</td>
<td>e- RMS: 20.0</td>
</tr>
<tr>
<td>Threshold Dispersion</td>
<td>e- RMS: < 5.0</td>
</tr>
<tr>
<td>Timing Dynamic Range</td>
<td>bits: 11.5</td>
</tr>
<tr>
<td>Timing Resolution</td>
<td>ns RMS: 350</td>
</tr>
<tr>
<td>Event Depth</td>
<td>-: 1</td>
</tr>
<tr>
<td>Conversion Gain</td>
<td>μV/e-: 70.3</td>
</tr>
<tr>
<td>Total Noise</td>
<td>e- RMS: 38.1</td>
</tr>
<tr>
<td>Signal Noise Ratio</td>
<td>-: 26.3</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>mW: 80.0</td>
</tr>
<tr>
<td>Readout Scheme</td>
<td>-: ITR - sparse or full</td>
</tr>
<tr>
<td>Radiation Tolerance</td>
<td>krad: 20</td>
</tr>
</tbody>
</table>

VX-802 design packaged in ceramic PGA.

Measurement of pixel detection events in slow mode (low bandwidth).
Commercial CMOS Foundry for Particle Detectors

DOE Contract # DESC0004237 /SBIR Topic: DOE NP 44d

Statement of problem

- Existing hybridized detectors have penalizing noise, granularity, and thickness due to
 - due to thin CMOS APS depletion
 - sharing of process with detection implants
 - integration techniques (e.g. bump bonding)
- CMOS limited in size by 20 x 20 mm² reticle
- Large detectors expensive

Approach

- Develop a domestic foundry services of monolithic fully-depleted SOI CMOS imagers
- Key innovations include:
 - SOI CMOS imager process
 - Custom engineered SOI wafers
 - Low dark current, low capacitance, silicon photodiodes fabricated in high resistivity silicon handle of SOI wafer
 - Low noise, radiation hardened ROIC design

Program Contacts

Primary Investigator
George Williams
georgew@voxtel-inc.com
971-223-5646 x112

Prog. Manager
Adam Lee
adaml@voxtel-inc.com
971-223-5646 x128

DOE TPOC
Manouchehr Farkhondeh
manouchehr.farkhondeh@science.doe.gov
301-903-4398
Monolithic SOI Pixel Detector Architecture

• Bonded double SOI (dSOI) wafer
 - high resistivity detector, low resistivity circuits
 - custom implants at each Si surface

• Standard SOI process
 - NMOS, PMOS, MIM caps, etc

• Isolated transistors
 - separate grounds for circuits and detectors

• Minimal Impact on CMOS Process

• Monolithic detector, with no bump bonds or 3D circuit stacking

• Can be very thin, fully-depleted

• High density (smaller pixel size is possible)

• Industry standard technology
 - cost benefit and scalability)
SOI CMOS “Through BOX VIA” 3D Interconnect

Diode diffusions (p+ & n+) in handle wafer and doped polysilicon plugs through the STI for electrical interconnection

Sandia CMOS7 process:
- 5 metal distribution layers.
- MiM capacitors,
- n+ poly resistors, and
- 0.35-µm feature length radiation hard FETs.

- Process is being developed on Sandia CMOS7 process
- Implementing photodiode implants and electrical interconnect through BOX
- Use custom SOI wafers with high resistivity handle
Through BOX Via Process

Implemented in SOI process
Results of Through BOX Process

Implants Used to Create Photodiode
- the high energy implants (> 1.5 MeV) must peak on bottom of BOX

FIB cross sections of deep contacts
Prototype Array Currently Being Fabricated

Layout of reticle being fabricated using through Si VIAs

SFD pixel shown in 3 x 3 array of pixels
Thank You

George Williams
Voxtel Inc.
15985 NW Schendel Ave
Beaverton, OR 97006
w. 971-223-5642 x 112
c. 503-703-3260

InGaAs Avalanche Photodiodes

SiPM/DSPAD Arrays

Hermetic, TE-Cooled GHz-Class Receivers

Back-Illuminated, Microlensed InGaAs / InAlAs / InP FPAs

psec-Resolution Photon Counting Instruments

Large Format Sensors