An Approach to Chemical Free Surface Processing for High Gradient Superconducting RF Cavities

Edward Cruz¹, Ph.D., Linton Floyd¹, Ph.D., Frederick Mako¹, Ph.D. and Larry Phillips², Ph.D., William Clemens²

October 1-2 2012

DOE, Office of Nuclear Physics, SBIR/STTR Exchange Meeting

¹FM Technologies, Inc., Chantilly, VA, USA, ²Thomas Jefferson Laboratory, Newport News, VA, USA

FMT Capabilities

- Founded in 1987, FM Technologies, Inc. (FMT) is a technology company with expertise in: charged particle beams, particle accelerators, plasma physics, electron/ion/microwave beam interaction with materials, microwave source development, pulsed power, and integration of these areas
- FMT has several projects approaching the commercial development stage
 - Ceramic/Ceramic & Ceramic/Metal joining for use in high temperature chemical conversion processes
 - Self-Bunching Electron Guns with/without Current Amplification for Accelerators and RF sources
 - Microwave Plasma Torches for various applications

FMT Facilities/Equipment

- Headquartered in Chantilly, VA, FMT has over 10,000 ft² of available laboratory space and 8,300 ft² of available office space
- Offices equipped with advanced multi-core workstations loaded with lacksquarea variety of sophisticated software codes including:
 - o EGUN, ICAP/SPICE, PARMELA, POISSON, SUPERFISH, SolidWorks, FEMM, HFSS, CSIRO, and FlexPDE-3D, FMT proprietary code FMTSEC (a 2 1/2D PIC code with secondary emission), MAGIC3D, CST, and an FMT 3-D relativistic particle pusher
- Laboratory has a full machine shop w/ plasma processing equipment:
 - Small and large (digital) precision Diamond saws lathes with high speed tool post grinder
 - o Digital milling machine
 - Grinding and sanding equipment
 - o Acetylene, arc and spot welders
 - o Cutoff saw
 - o Band saw

- - Small (digital) and large precision drill presses
 - Microwave assisted chemical vapor deposition system
 - o RF and DC gun sputtering system
 - o 2200K brazing/joining furnace

FMT Facilities/Equipment

- Experimental hardware owned by FMT includes:
 - Pulsed Power Electron Beam and RF sources
 - Electron Beam System (1MV x 40kA x 0.1µs)
 - L-band (0.5 and 5 MW pulsed)
 - S-band (0.8, 1, 2.6 and 13 MW pulsed; 1 and 6 kW CW)
 - X-band (two 0.25 MW pulsed)
 - Broadband Amplifiers (50-2500 MHz, 50-100W CW)
 - MEIJI optical microscope w/ video out (400x, 2.5µm resolution)
 - Fast oscilloscopes
 - Ten 100-400MHz digital scopes •
 - One 50GHz sampling scope
 - Particle transport magnetic coils
 - Nine vac-ion pumps, 2-400 L/s
 - Six turbo molecular pumps, 60-400 L/s Chemicals, labware and glassware
 - Various roughing pumps
 - 1.5 MJ Capacitor bank

- High-power RF components
 - Circulators
 - Isolators
 - Phase/amplitude adjusters
 - 0.1-1 MV pulse modulators
- Power supplies and other test equipment

Project

- SRF Cavity chemical treatment is expensive and complex
- After treatment surfaces still have numerous bubbles and pits
- Quench-producing weld defects and contamination result in significant scatter of Nb SRF cavity performance
- High costs and performance scatter are the major manufacturing problems
- FMT proposes to develop an internal electron beam (IEB) system that will perform electron beam melting over the entire interior surface of Nb SRF cavities
- Result is a surface that is smooth, void/bubble free, and free of imperfections
- This may allow manufacturing of the Nb SRF cavities with a reduction in chemical treatment and an increase in cavity high gradient performance
- FMT will design, build and test the new IEB system and process samples/cavities
- Thomas Jefferson Laboratory will measure RF performance of processed samples/cavities

Seven-Cell Nb SRF Cavity at Thomas Jefferson National Accelerator Facility

International Linear Collider alone needs 22,000 cavities at \$210k (avg.) /cavity = \$4.62 Billion

Typical SRF Cavity Defects

Pictures show typical defects inside Nb SRF cavities around the equator EBW overlaps that remain after chemical treatment:

• Irregularity (step) near equator EBW overlap of cell #7 from waveguide

• Many "bubbles" sporadically present inside the weld

• Two cells have less pronounced features; four cells have no recognizable features

• Many apparent "deep pits" in heat affected zone

Study of Beam Processing for Cavities

Objectives:

- Achieve a smooth surface with minimal defects and impurities to reduce quenching
- Achieve a low strain surface to reduce corrosion and absorption of contaminants
- Final goal is to attain reproducible high Q (>10¹⁰) and high field (~40MV/m) cavities

Electron Beam Melted Nb Samples Using J-lab SCIAKY Welder

Each single pass melt region is about 6 mm x 74 mm x 0.1-0.2mm deep

A 10 kHz circular to elliptical raster with 0.5-1 mm beam diameter with a particle energy of 50 keV

Beam current and translation rates varied from 20-250mA and 5-20 in/min

28 plates of Nb with dimensions 3 mm thick x 25.4 mm wide x 88.9 mm long

Magnification of Melt Zone

HIROX digital microscope view of sample #6

Bottom half of image shows the smooth melted region that highlights the grain size of about 300-400 µm, while upper half of image shows the rough un-melted small grain region

Grain Reference Orientation Deviation (GROD) Map for Deep Drawn Half Cell

EBSD GROD Map 500 µm deep

Severely deformed, >15° in 50 μm

		Total	Partition
Min	Max	Fraction	Fraction
0	3.87436	0.488	0.488
3.87436	7.74872	0.369	0.369
7.74872	11.6231	0.088	0.088
11.6231	15.4974	0.038	0.038
15.4974	19.3718	0.013	0.013

Color Coded Map Type: Grain Reference Orientation Deviation

Boundaries: Rotation Angle <u>Min Max Fraction Number Length</u> 15" 180" 0.011 8093 2.43 mm

For statistics - any point pair with misorientation exceeding 0 is considered a boundary total number = 743433, total length = 22.30 cm) The GROD map shows extreme lattice distortion up to an angular rotation of about

The section is

taken from 3 mm

from the equator

20 degrees

No chemical etching has occurred

Deviation from grain minimum KAM

0.3 µm spatial resolution

Courtesy of Dr. Roy Crooks of Black Laboratories

Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #7

No. 7

Note lattice curvature in grain on left

Both samples #6 and #7 show GROD in the range of $0 - 3^{\circ}$ over a distance of 100 $- 300 \mu m$.

40mA and 10in. /min.

No chemical etching has occurred.

Grain Reference Orientation Deviation (GROD) Map for Nb Flat Sample #15

No. 15

GROD

Color Coded Map Type: Grain Reference Orientation Deviation

Min	Max	Fraction	Fraction
0	1	0.960	0.960
1	2	0.036	0.036
2	3	0.001	0.001
3	4	0.000	0.000
4	5	0.000	0.000

Samples #14 and #15 show less lattice distortion compared to samples #6 and #7 as measured by GROD

 $0-2^{\circ}$ with the majority of distortion less than 1° over $100-300 \ \mu m$

No chemical etching has occurred

AFM of Sample #15

AFM RMS value of less than 3 nm, which is 1/20 of what can be accomplished by electro-polishing and much less than the superconducting layer thickness for Niobium of 42 nm @ 2K

Comparison Of Grain Deviation For Nb: E-Beam Processed and Deep Drawn

Comparison of Grain Deviation for Various E-Beam Processed Nb Samples

Chemical Free Half-Cell Processed in J-lab's SCIAKY E-beam Welder

Finished E-Beam Processed Half-Cell

The beam parameters were: 40 mA, 0.5mm diameter beam, travelling at 18 inches per minute, the melting diameter is about 6 mm with a circular pattern at 10 kHz.

Summary of Beam Results for A Smooth-Low Strain Surface

- Both HIROX & AFM suggest that a smoother surface is attained at lower beam energy dose
- EBSD (GROD) maps suggest a lower strain surface is attained at lower beam energy dose
- Desired beam parameters have been determined

Electron Gun and Beam Transport Design

- Two Strategies: Ballistic Focusing and Magnetized Beam CRITERIA:
 - Can process from iris to equator and circumference
 - Prevent Nb vapor arcing
 - Can tolerate beam induced thermal radiation & filament heat load
 - Electron Gun Characteristics: ~50keV, beam spot 0.5-1mm, gun diameter < cavity iris (<50mm), long focal length (30-100cm) and current control independent of focus

Ballistic Focusing Gun

Ballistic Focusing Gun: Electron Beam Trajectory

Helmholtz coils provide R-Z beam scanning from iris to equator

Azimuthal scanning provided by rotating either the cavity or Helmholtz coils or field about the Z-Axis

Type Energy Time 2.404e-009

Magnetized E-Beam Gun Simple Gun Design: Only Needs Cathode, Grid & Anode

Magnetized E-Beam Gun: Electron Beam Trajectory

Bucking coil position/current provides R-Z beam scanning from iris to equator

Azimuthal scanning provided by rotating cavity

Advantage over ballistic gun of much longer focal length, but more complex magnetics

Ballistic vs. Magnetized Beam

- Ballistic
 - Compact
 - Shorter focal length
 - Slow/uniform melting
 - Complex
 - In-cell processing issues

- Magnetized
 - Simple
 - Long focal length
 - Higher beam power
 - Cannot point focus
 - Requires very large magnets

Prototype Gun Design

- SCIAKY tantalum filament
- 67A @ 1.4V
- Passively cooled
- Improved filament design to come later

Stainless Steel Test Chamber

Chamber reaches 10⁻⁸ Torr in ~2hr with turbo and cryo-pumps

Chamber ready for gun installation and high voltage

Chamber suitable for time dependent magnetic fields: magnetic diffusion time ~13ms

High Voltage Transformer

- "E" core transformer
- 15kVA, 220V RMS input
- Four secondary windings
- 2+2 configuration gives 230mA @ 65kV

Filament Transformer

- FMT design
- 2.3kVA, 115V RMS input
- 20A primary
- Capable of 430A @ 5.35V w/ 150kV isolation

Summary and Status

- Beam parameters have been determined that give a smooth low strain surface using a conventional rastered beam
- Two gun designs examined (ballistic & magnetized beams) to meet the requirements with and without rastering for both internal and external gun operation
- Stainless steel vacuum chamber, suitable for time dependent magnetic fields, ready for high voltage and e-gun
- High voltage power supply and filament transformer ready for e-gun
- Prototype gun designed and ready for fabrication
- Next step will be to surface melt Nb flat strips with new e-gun