Ultrafast Radiation-Hard Large Volume Gallium Oxide Spectroscopic Scintillators

Amlan Datta*
CapeSym, Inc., Natick, MA, USA

Project Award Number: DE-SC0021476
Period of Performance: 04/04/2022 – 04/03/2024

Presented Jul 30, 2025
DoE NP PI Meeting

This work was made possible by the support of the DOE Office of Science **Nuclear Physics (NP) program** under award DE-SC0021476.

* datta@capesym.com

Program Overview

Program Goal:

Radiation Hard Scintillators for Crystal Calorimetry
Non-Hygroscopic

High-density

Robust

Based on:

Gallium Oxide (β-Ga₂O₃) Scintillators

On CapeSym

- Founded 1992
- Employees: 12
- Science + Manufacturing:
 - Materials engineering and processing
 - Crystal growth
 - Materials Characterization
 - Radiation detectors and instruments
 - GEANT4 Scintillation modeling, Thermal modeling.
- Strong participation in a number of US government-supported initiatives:
 - DOE, DHS, DoD, NIH, NASA

CapeSym Commercial R&D Capabilities

GEANT4 Scintillation Modelling

Radiation Detection Electronics and Instruments Development

Scintillator Crystal Growth

Radiation Detection Characterization

CapeSym Manufacturing Capabilities

- Today: ~1000 large size detectors/year
- All process stations + furnaces designed and built at CapeSym
 - Low cost
 - Can scale rapidly 3 months
- Automated crystal growth, cutting and polishing
- Low moisture glove boxes, multiple gamma sources, DD neutron generator, environmental chamber, oxygen tester
- High-throughput encapsulation process
- Rugged encapsulation with PMTs and SiPM arrays
 - Meets ANSI environmental standards

Program Overview

Program Objectives:

Our primary focus in this work is to pioneer the development of β-Ga₂O₃ scintillators which is expected to redefine the benchmark scintillator properties of current detectors used for crystal calorimetry experiments in nuclear physics:

β-Ga₂O₃: Advantages & Promise

Why β-Ga₂O₃ Scintillator:

- 1. Extremely radiation hard, demonstrated up to 160MRad (γ).
 - We tested up to 2MRad (About 8 days of beamtime at ⁶⁰Co irradiator)
- 2. Good scintillation properties: High Light Yield
 - We measured a highest value of ~8000 Ph/MeV
- 3. Fast decay (~tens to hundreds of nanosecond primary decay)
 - We measured the decay times around 2ns: target achieved!

β-Ga₂O₃: Advantages & Promise

Why β-Ga₂O₃ Scintillator:

- 4. Robust, temperature- and moisture-insensitive.
- 5. Low cost and high yield manufacturability using Float Zone.
- 6. Highly scalable Multiple crystal growth options.
- 7. R&D investment for high power substrates (beyond SiC and GaN)

7/30/2025

DoE NP PI Meeting

β-Ga₂O₃: Crystal Growth techniques

Wertical Bridgman

7/30/2025

Czochralski

Edge Defined Film Fed Growth

Float Zone

IKZ

Tamura

Tamura

CapeSym

IEEE NSS MIC 2024

9

1. Establishment of FZ Growth Capability at CapeSym

Advantages of FZ:

- No containment issues
- Process materials with melting temperature up to 3000°C
- Relatively quick turnaround time Costeffective!
- Low capital cost and short learning curve

First β-Ga₂O₃ CapeSym Crystal May 2023

7/30/2025 DoE NP PI Meeting 10

Feed Rods Optimization

Feed Rod Pressing

Crystal Growth using Float Zone technique

In situ video of β-Ga₂O₃ growing crystal in the FZ furnace at ~1900°C.

β-Ga₂O₃ Crystal Growth Optimization over ~1.5 years

Excellent Scintillation Properties

Effect of Bandgap Defects

β-Ga₂O₃ Crystals Grown at CapeSym

β-Ga₂O₃ Crystals Grown Worldwide

3. β-Ga₂O₃ Crystal Characterization

Optimized high-purity transparent β - Ga_2O_3 crystal grown after parameter optimization.

7% Energy Resolution at 662keV

137Cs Gamma spectra yielding a light yield of 8000 Ph/MeV.

3. \(\beta - Ga_2O_3 \) Crystal Characterization

Spectroscopic Response from a 2-cm Thick β-Ga₂O₃ Scintillator

12% Energy Resolution at 662keV

137Cs Gamma spectra yielding a light yield
of 5200 Ph/MeV

3. \(\beta - \text{Ga}_2 \text{O}_3 \) Crystal Characterization

Decay curves for β-Ga₂O₃ Detectors: ~2ns Decay

Decay curves for 3 different types of fast scintillators obtained from calibrated set up

3. \(\beta - Ga_2O_3 \) Crystal Characterization

Excellent Non-proportionality β-Ga₂O₃ Detectors

Comparison with NaI and CeBr3

4. Doped β-Ga₂O₃ Crystal Growth

Doped β-Ga₂O₃ Crystal Growth

 ^{137}Cs Gamma spectra from $\beta\text{-Ga}_2\text{O}_3\text{:Yb}$ scintillator yielding a light yield of 6620 Ph/MeV.

Large Volume β-Ga₂O₃ Crystal

Even Larger Volume β-Ga₂O₃ Crystal Growth

Need more time for optimization

Large Diameter Feed Rods

Very Large Volume β-Ga₂O₃ Crystal

Even Larger Volume β-Ga₂O₃ Crystal Growth is Required

For larger crystals, we need to change the growth process to:

Ultrahigh power Float Zone
(12000W versus current 4000W)

Significant Capital Investment: Currently looking for funding to set this up and optimize growth

Compact β-Ga₂O₃ Modules

Compact β-Ga₂O₃ Detector Modules

Complete Commercial Modules

β-Ga₂O₃ Detector Module Performance Similar to the large PMTs

5. Radiation Hardness

¹³⁷Cs Gamma spectra from β-Ga₂O₃ measured during 2MRad (20kGy) ⁶⁰Co Gamma irradiation

Both Detectors are of SAME size

¹³⁷Cs Gamma spectra from PbWO₄ measured during 2MRad ⁶⁰Co irradiation

CLYC Scintillator

Before

After 0.5MRad

5. Radiation Hardness

 137 Cs Gamma spectra from β-Ga $_2$ O $_3$ measured during 2MRad 60 Co irradiation

Not just for One device, measured for β-Ga₂O₃ 26 detectors

 ^{137}Cs Gamma spectra from multiple $\beta\text{-}Ga_2O_3$ detectors measured during 2MRad ^{60}Co irradiation

Conclusions

Phase II Achievements and Conclusion

- 1. Demonstration of β -Ga₂O₃ inorganic scintillators with:
 - High light yield (~8000 photons/MeV),
 - Good spectroscopic response (7% energy resolution at 662 keV), and
 - Ultrafast decay times (~2 ns)
- 2. Spectroscopic β-Ga₂O₃ scintillators grown in just one day, commercially viable.
- 3. Radiation hardness demonstrated using gamma irradiation.
- 4. Commercial detector modules complete with digital signal processing electronics.

More Details in the Publication

Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators

A. Datta, H. Mei, A. Lebedinsky, P. Shiv. Halasyamani, S. Motakef, <u>Journal of Applied Physics</u>, 14 August 2024; 136 (6): 064503.

https://doi.org/10.1063/5.0219987

Conclusions

Phase II Achievements and Conclusion Commercial Pull

Detector under evaluation in four industries:

- **Dosimetry Applications** A dosimeter company purchased our Ga_2O_3 sensors and is evaluating for further acquisition.
- **Defense Applications** Detectors are being evaluated at a defense company for field applications
- Scientific Instruments Detectors are being evaluated for scientific instruments like electron microscopy.
- **Medical Imaging** Detectors are being tested for imaging like Ultrafast PET with Universities like Delft University (Results to be presented at IEEE NSS MIC 2025 at Yokohama, Japan)
- Substrate Industry Sold substrates to electronics customers, waiting for more orders (limited by size).

Acknowledgements

This work was made possible by the support of the DOE Office of Science Nuclear Physics (NP) program under award DE-SC0023561.

We extend our sincere thanks to our collaborators:

- University of Houston
- Ohio State University

Thank You for Your Attention! datta@capesym.com