STREAMLINE

SmarT Reduction and Emulation Applying Machine Learning In Nuclear Environments

DOE NP AI/ML PI Exchange Meeting November 19 – 20, 2025

STREAMLINE Collaboration: Machine Learning for Nuclear Many-Body Systems

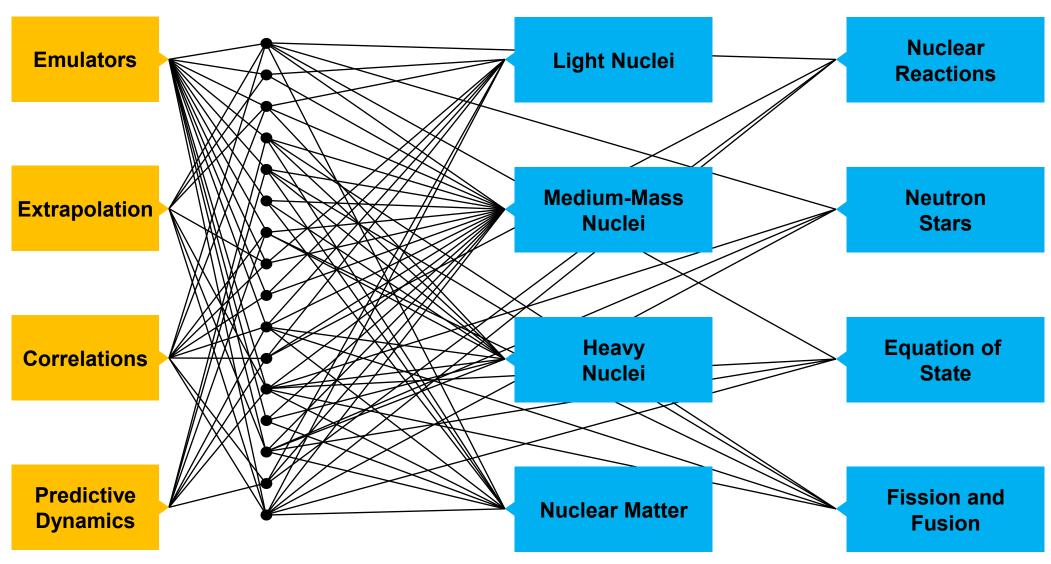
Principal Investigator: Dean Lee, Facility for Rare Isotope Beams, Michigan State University

Institution	Investigators [Co-Investigators*, Senior Personnel†]	
Michigan State Univ.	Pablo Giuliani [†] , Kyle Godbey [†] , Morten Hjorth-Jensen [*] ,	
	Dean Lee*, Witold Nazarewicz* Xilin Zhang [†]	
Argonne Nat. Lab.	Alessandro Lovato*	
Fermilab	Noemi Rocco*	
Florida State Univ.	Kévin Fossez*, Jorge Piekarewicz*	
North Carolina State Univ. Sebastian König*		
Oak Ridge Nat. Lab.	Gaute Hagen*	
Ohio State Univ.	Richard Furnstahl*	
Ohio Univ.	Christian Drischler*	
Univ. Tennessee	Thomas Papenbrock*	

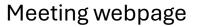
Our team performs research in the areas of fast and accurate emulators, smart model extrapolation, learning correlations in wave functions and operators, and predicting nuclear dynamics, including nuclear fission, and heavy-ion fusion.

Institutions = 9, PIs + Senior Personnel + Collaborators = 18, Postdocs + Students = 10

Scientists



STREAMLINE Collaboration Meeting April 29 – 30, 2025 Argonne National Laboratory



YouTube videos of talks

April 29

8:30-9:00	Registration		
9:00-9:15	lan Clöet (Deputy PHY Division Director)	Welcome to Argonne	
9:15-9:30	Dean Lee (FRIB)	Announcements	
9:30-10:00	Pablo Giuliani (FRIB)	More on learning equations from data	
10:00-10:30	Coffe Break		
10:30-11:00	Patrick Cook (FRIB/MSU)	PMMs for Nonlinear Systems: The Gross- Pitaevskil Equation	
11:00-11:30	Danny Jammooa (FRIB/MSU)	PMMs for Euclidean time evolution	
11:30-12:00	Benjamin Clark (MSU)	Emulating the Magnus formulation of IMSRG using PMMs	
12:00-13:30	Lunch at the Cafeteria		
13:30-14:00	Bryce Fore (ANL)	Investigating the crust of neutron stars with NQS	
14:00-14:30	Jane Kim (Ohio)	Excited NQS	
14:30-15:00	Alessandro Lovato (ANL)	Hypernuclei with NQS	
15:00-15:30	Coffee Break		
15:30-16:00	Simon Sundberg (OSU)	Critical analysis of neural networks in simple nuclear systems	
16:00-16:30	Daniel Lay (MSU)	Accelerating DFT simulations for uncertainty quantification	
16:30-17:00	Xilin Zhang (MSU)	Nuclear continuum physics and emulations	
17:00-18:00	Discussion		
18:00-20:00	Dinner at Wooden Paddle		

April 30

9:00-9:30	Abinhav Giri (Ohio)	Emulators for two-body scattering in momentum space	
9:30-10:00	Mudivanselage Nuwan Yapa (FSU)	Towards scalable emulators for many-body resonances	
10:00-10:15	Manouchehr Farkhondeh (DOE Program Manager)	Q&A about AI/ML at DOE Nuclear Physics (via Zoom)	
10:15-11:00		Coffee Break	
11:00-11:30	Gaute Hagen (ORNL)	Recent advances in emulating coupled cluster calculations	
11:30-12:00	Thomas Papenbrock (UT & ORNL)	Emulators tell us about nuclear deformation / Hartree Fock mass models	
12:00-12:30	Symposium adjourns		

STREAMLINE Collaboration Progress

All project milestones complete or nearly complete

Projected Date	Task	Milestone
1/31/2024	3.2.1	Theory and development of parametric matrix models
5/31/2024	3.2.2	Proof-of-principle demonstration for greedy algorithm (with error estimates) for two-nucleon scattering with realistic interaction.
8/31/2024	3.2.2	First implementation and testing of three-body scattering emulator for Nd system.
7/31/2024	3.2.3	Implementation of few-body resonance emulators in the Berggren basis
7/31/2024	3.2.4	Initial setup of emulators key nuclei in the "island of inversion" to be studied at FRIB
8/31/2024	4.2.1	Quantified predictions of nuclear properties based on long-range extrapolations for r-process nuclei
6/31/2024	5.1.3	Development of ANN wave functions of A = 40 nuclei
8/31/2024	5.1.4	Light hypernuclei with ANN wave functions
7/31/2024	5.2.1	Unsupervised/supervised learning of alpha clustering in medium-mass nuclei
8/31/2024	5.2.2	Correlations for spectra learned from model-space dependence
1/31/2024	6.1.1	Development of PES emulator for fission using a committee of NNs
8/31/2024	6.1.3	Apply RBs to speed-up nuclear DFT calculations
8/31/2024	6.2.1	Analysis of dynamic modes in TDDFT using time- dependent emulators

Projected Date	Task	Milestone
4/30/2025	3.2.1	Parametric matrix models for neutron separation energies
8/31/2025	3.2.2	Demonstration of extended three-body scattering emulator
8/31/2025	3.2.4	Emulators for key nuclei in the "island of inversion" to be studied at FRIB
8/31/2025	4.2.1	Quantified predictions based on long-range extrapolations for nucleonic phases in the neutron star crust
8/31/2025	4.2.2	Inference of neutron-star radii via smart model extrapolations
8/31/2025	4.2.3	Extrapolations for resonances in few- and many body systems
8/31/2025	5.1.2	Demonstration that RG unitary transformations can be learned
8/31/2025	5.1.3	Demonstration of real-time dynamics for ANN wave functions
8/31/2025	5.2.1	Unsupervised/supervised learning of nuclear matter quantum phases in deformed traps
4/30/2025	5.2.2	Application of ML to nuclear spectra extrapolation with quantified errors based on learned correlations
1/31/2025	5.2.3	Parametric matrix models for ⁸ Be resonances using finite volume energies
4/30/2025	6.1.1	Development of RB for physics-informed/intrusive PES emulation for single nucleus
4/30/2025	6.1.1	Dimensionality reduction investigation of PESs
8/31/2025	6.1.2	Develop and test fission fragment observable emulation from each PES
1/31/2025	6.1.4	Develop framework for ML-directed nuclear EDF determination
1/31/2025	6.1.4	Improvements to the energy density functionals
12/31/2024	6.2.1	Begin development of Neural Implicit Flow emulator for TDDFT

STREAMLINE Collaboration Budget

	FY 2024 (\$k)	FY 2025 (\$k)	Totals (\$k)
a) Funds allocated	605	605	1210
b) Actual costs to date	605	605	1210

WBS or ID#	Institution	Subtotals (\$k)
271819	MSU	352
271828	ANL	122
271837	FNAL	124
271823	FSU	187
271870	OSU	90
271873	OU	92
271812	ORNL	71
271846	NCSU	87
271858	UTK	85
Total		1210

STREAMLINE Collaboration Highlights

Team

N. Yapa

K. Fossez

S. König

Relevance

Many-body calculations in exotic nuclei are critical for FRIB & astrophysics, but computationally costly and sometimes unstable in decaying systems.

Eigenvector continuation (EC) recently emerged as a powerful method to build emulators and perform extrapolations

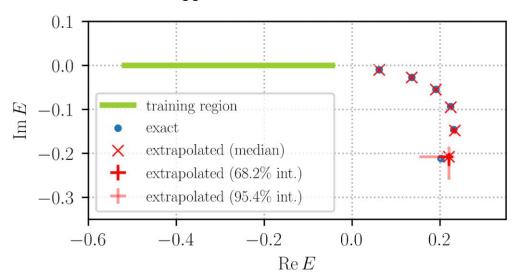
Goal: Generalize EC to complex-energy problems to perform efficient and reliable bound-to-resonance extrapolations in exotic nuclei.

Context

New method (pre-STREAMLINE): Complex-augmented EC (CA-EC).

- Proof-of-concept for two-body resonances using toy model.
- Method tested using only complex-scaling.

N. Yapa *et al.*, Phys. Rev. C **107**, 064316 (2023), Editor's Suggestion.



STREAMLINE: Toward realistic applications

- Scaling of CA-EC to N-body decay & demonstration in 3-body case.
- **Berggren basis** formulation to improve numerical scalability for N>3.
- Configuration-interaction and lattice formulations tested.
- First application in realistic system (⁶He).

N. Yapa *et al.*, Phys. Rev. C **111**, 064318 (2025)

Funding of the STREAMLINE collaboration provided critical support to go beyond initial findings.

Current progress

Sequential 5p decay of ⁹N (observed in 2023)

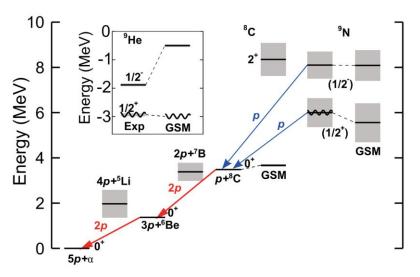
- Six-body resonance, several open decay channels.
- CA-EC with complex-energy Coulomb wave functions.
- Experimental interest.

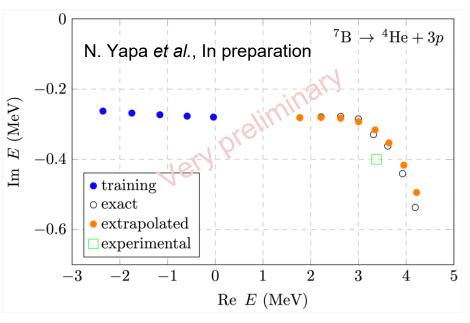
Preliminary results in ⁶Be and ⁷B promising.

New directions:

- Parametric matrix models (PMM) for resonances.
- Neural quantum states (NQS) for resonances.

R. J. Charity et al., Phys. Rev. Lett. 131, 172501 (2023)





Motivation: mining scattering data

Scattering experiments yield invaluable data for calibrating, validating, and improving chiral EFT (and optical models)

Competing formulations of chiral EFT with open questions on issues including

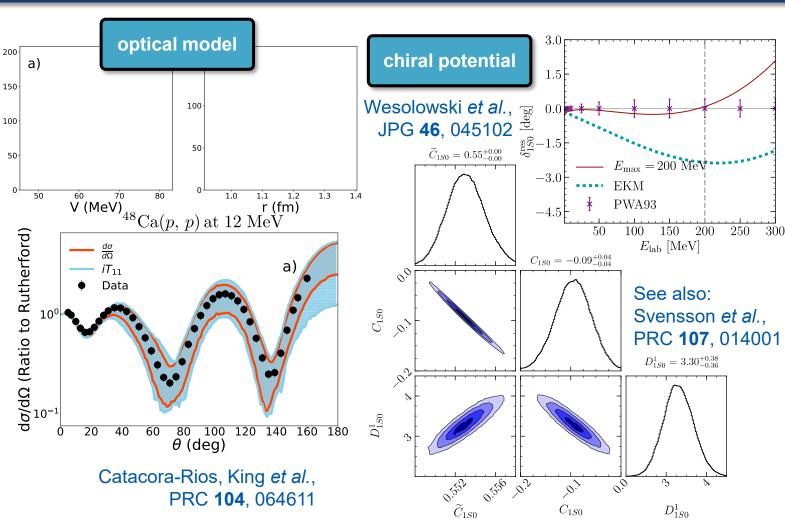
- EFT power counting
- sensitivity to regulator artifacts
- Differing predictions for mediummass to heavy nuclei

see, e.g., Yang, Ekström et al., arXiv:2109.13303 Furnstahl, Hammer, Schwenk, Few Body Syst. 62, 72

Bayesian methods have become standard for principled UQ in nuclear physics:

- parameter estimation
- model comparison
- sensitivity analysis

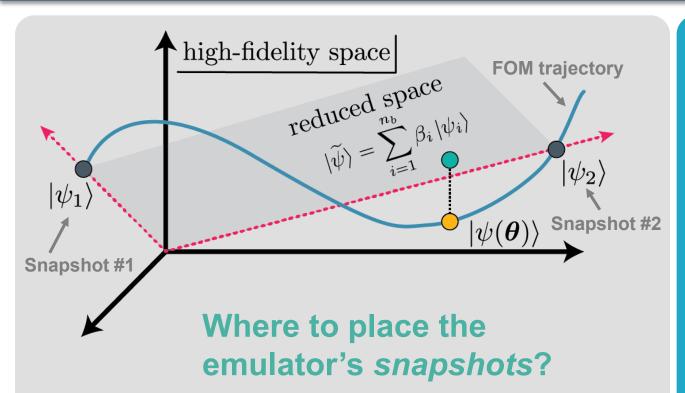
BUQEYE Chalmers ISNET



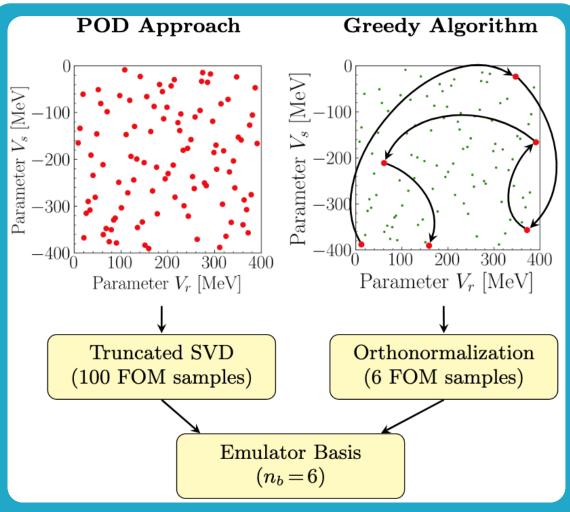
Scattering eqns. (FOM) can be solved accurately in few-body systems.

But: prohibitively slow for statistical analyses of A > 2 scattering

Construct <u>emulators</u> by removing superfluous information



- Space-filling sampling combined with a Proper Orthogonal Decomposition (POD)
- 2. Active learning approach based on error estimation and a greedy algorithm



The greedy method uses far fewer FOM solutions to construct its basis, iteratively adding snapshots where the (estimated) emulator error is maximum.

Greedy Algorithm in Action (preview)

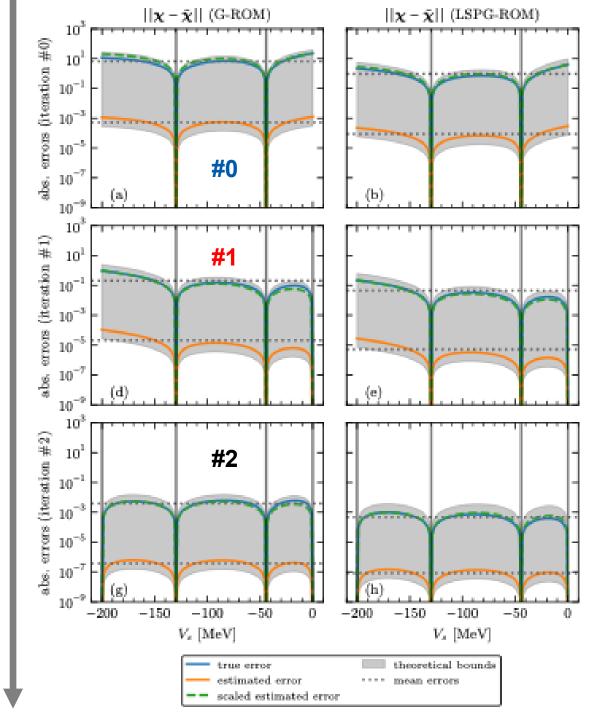
start with 2 randomly placed initial snapshots

Estimate the emulator error across the parameter space

Place the next snapshot(s) at the location(s) of maximum estimated error

Iterate until the requested accuracy is obtained

Greedy Iteration increasing accuracy



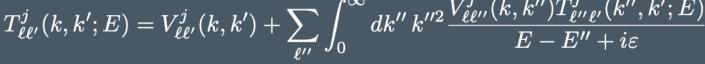
Extension to coupled channels & momentum space

Giri, Kim, Drischler, Elster, Furnstahl et al., in prep.

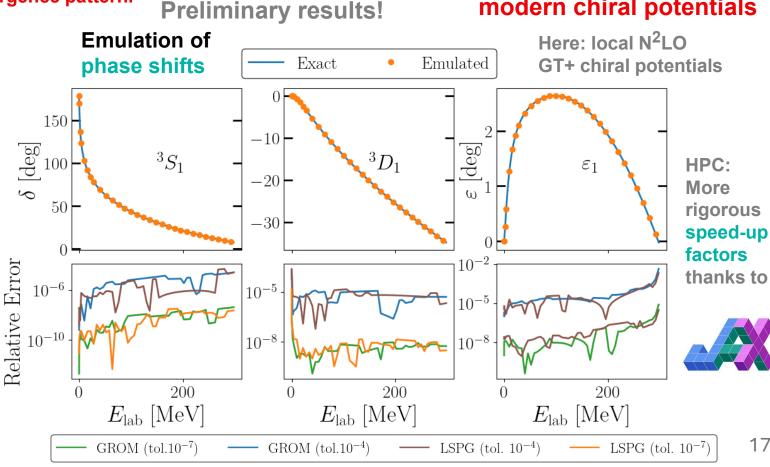
$$T^{j}_{\ell\ell'}(k,k';E) = V^{j}_{\ell\ell'}(k,k') + \sum_{\ell''} \int_{0}^{\infty} dk'' \, k''^{2} \frac{V^{j}_{\ell\ell''}(k,k'') T^{j}_{\ell''\ell'}(k'',k';E)}{E - E'' + i\varepsilon}$$

Lippmann-Schwinger (integral) equation

17



As before, the greedy algorithm exhibits a fast convergence pattern. **Proof of principle: Bayesian** calibration of chiral NN potentials (including emulator errors) C_S, C_T, C₁, C₂, C₃, C₄, C₅, C₆, C₇ **Emulation of** total cross sections



N-d scattering emulator

Gnech, Zhang, Drischler, Furnstahl et al,, arXiv:2511.01844 and arXiv:2511.10420

Emulate three-body scattering with greedy snapshot selection

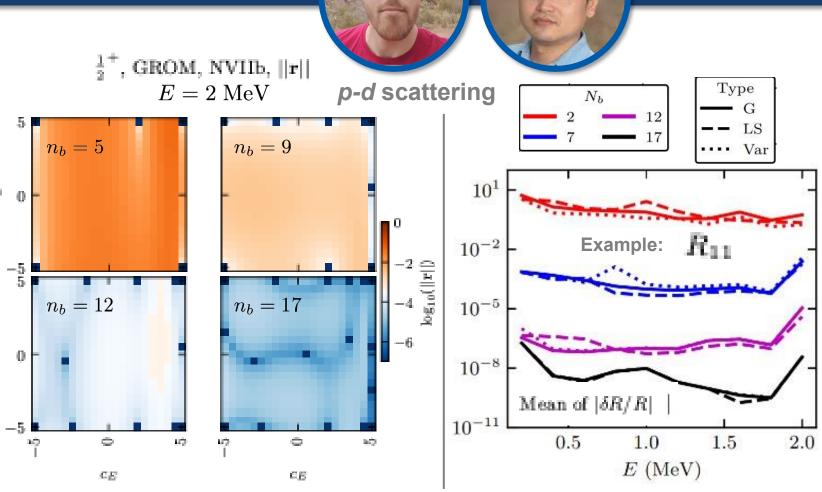
FOM: KVP for three-body scattering & hyperspherical harmonics method (linear system)

$$\mathcal{F}_{a,a'}\left[\Psi^a,\Psi^{a'}
ight]\equiv\mathcal{R}_{a,a'}-\left\langle\Psi^{a'}|\hat{H}-E|\Psi^a
ight
angle$$

ROM: G-ROM (G) or LSPG-ROM (LS)

So far: *N-d* scattering below the deuteron break-up threshold with

- fixed N³LO NN potential (Norfolk)
- N^2LO 3N interactions (c_D , c_E)

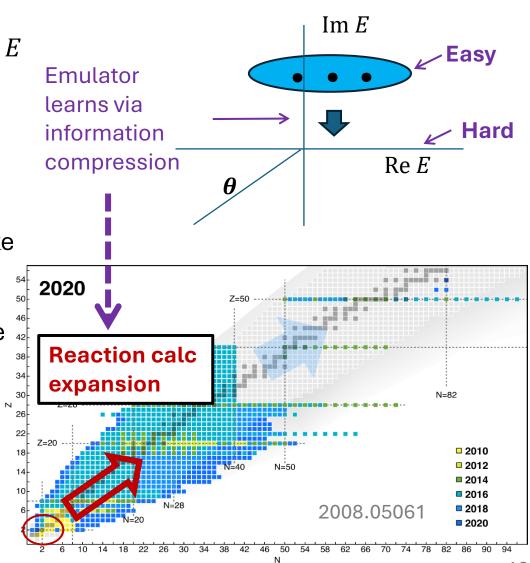


Greedy algorithm: systematic reduction of emulator errors

Needed: extension to cross sections and higher energies is critical for **Bayesian calibration** of chiral 3N interactions

Machine Learning Nuclear Reactions from Imaginary Domain

- Nuclear reaction calculation at complex (imaginary) energy ${\it E}$ is similar to bound-state calculation.
- Numerically, it is much easier than its real-E counter part.
- But we need results at real E.
- Emulator learns real-E reaction from easier bound-state-like calculations \rightarrow expanding reaction calc. in nuclear chart
- Such learning process can be further emulated in the space of other parameters heta o easy access to the calculations
- Two papers in joint publication at *Physical Review Letters* and *Physical Review C*: Xilin Zhang, <u>2408.03309</u>, <u>2411.06712</u>



Artificial Neural Network Field Theory for Nuclear Physics

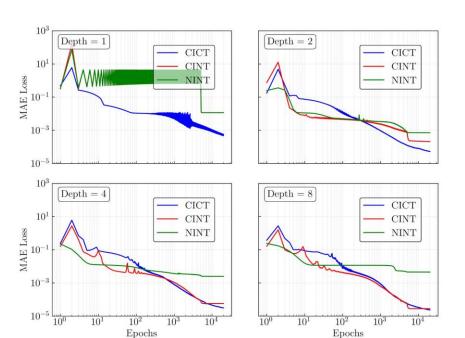
S. Sundberg and R.J. Furnstahl, J. Phys. G (2025, in press)

Analogous to pathintegral calculations, ANNFT makes tools from Quantum Field Theory applicable to analyzing networks.

$$\langle z^4 \rangle = \frac{1}{n} + \left(1 - \frac{1}{n}\right) \left(+ \frac{1}{n} + \frac{1}{n} \right)$$

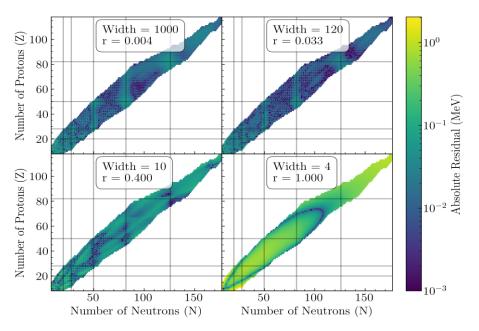
$$\underbrace{\int d\theta \, P(\theta) \, e^{\int d^d x \, J(x) f(x)}}_{\text{parameter space}} \Longrightarrow \mathbf{Z}[J] = \left\langle e^{\int d^d x \, J(x) f(x)} \right\rangle \Longleftrightarrow \underbrace{\int \mathcal{D}f \, e^{-S[f] + \int d^d x \, J(x) f(x)}}_{\text{function space}}$$

- Artificial Neural Network
 Field Theory (ANNFT) offers
 a way of looking inside the
 black box of neural network
 behavior.
- Specific values of the initialization and training hyperparameters tune networks to criticality.
- Tuning a network to criticality results stable, understandable networks that offer explanations for common successes and failures in neural networks



ANNFT informed networks (Blue Line) have better loss values than uninformed (Green Line).

BE Networks have lower RMSD values.



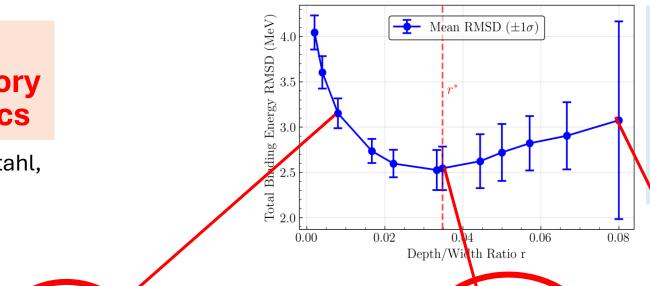
Gives tools for understanding what choices of network features result in the best learning.

Builds on Roberts, Yaida, Hanin, arXiv:2106.10165 (2021)

Artificial Neural Network Field Theory for Nuclear Physics

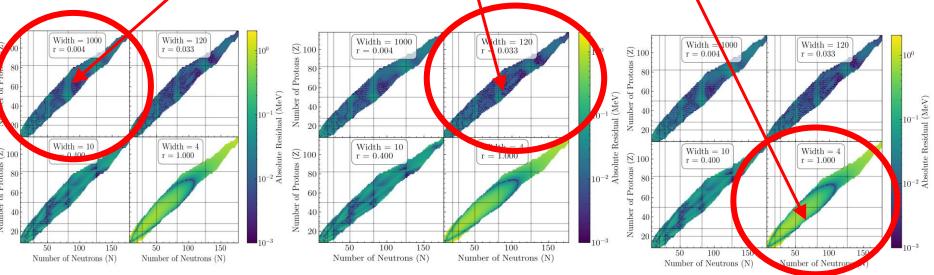
S. Sundberg and R.J. Furnstahl,

J. Phys. G (2025, in press)



When tuned to criticality, different regimes of learning appear that are governed by the ratio of depth to width *r*.

To make ANNFT calculations tractable, r should be set to an optimal value r^*



As $r \rightarrow 0$, interactions are turned off, and learning features are lost

For *r* near *r**, interactions are perturbative and features are learned best

As *r* approaches values ≤1, neuron interactions become nonperturbative, and learning is impossible

HYPERNUCLEI WITH NQS

Goal: ab-initio description of hypernuclei with quantified uncertainties

Method: combine gaussian process emulators with neural network quantum states

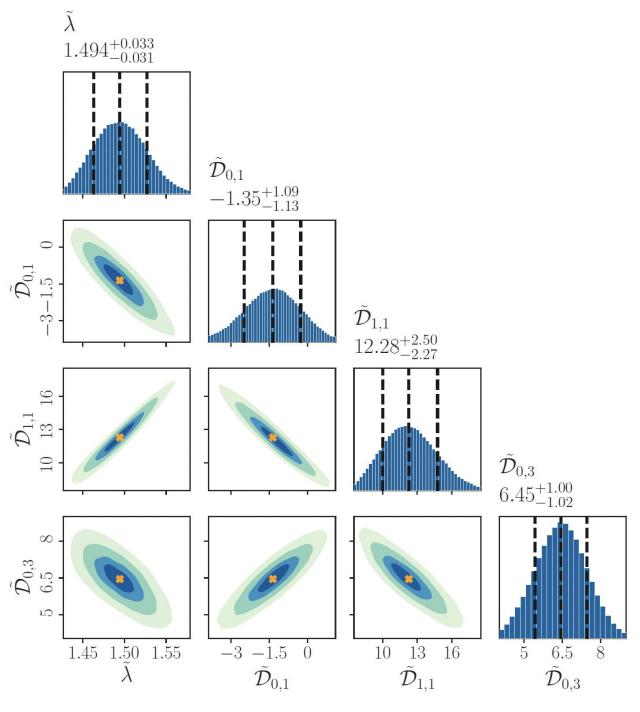
Results: joint distributions of the LECs (in MeV) and cutoff (in fm⁻¹) entering the three-body NNA potential.

Publication: arXiv:2507.16994 [nucl-th]: (submitted to PRR)

Streamline: A. Lovato (Argonne)

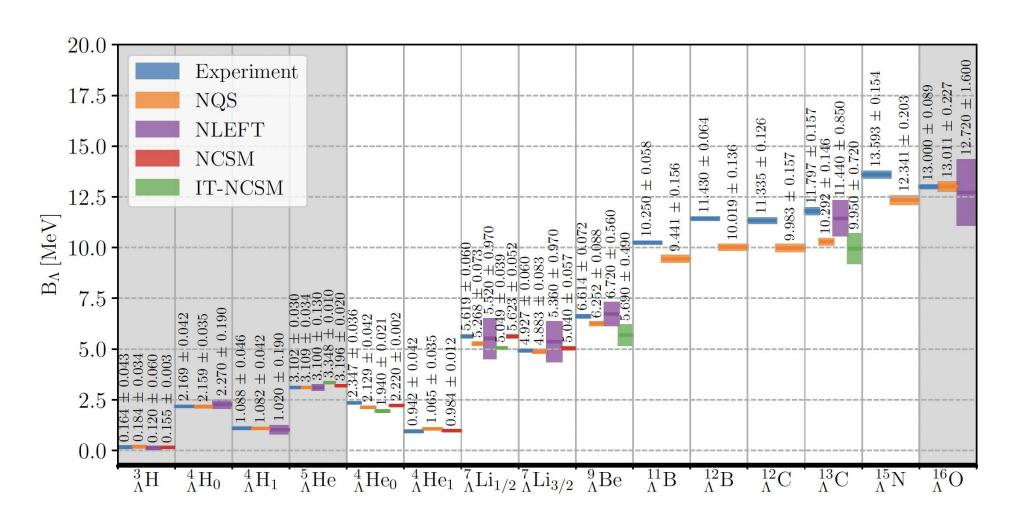
Collaborators: A. Di Donna, F. Pederiva

(University of Trento, Italy)



HYPERNUCLEI WITH NQS

Results: excellent agreement with experiments; residual differences likely to be solved including subleading contributions in the Hamiltonian



NEURAL WAVE FUNCTION FOR A=40 NUCLEI

Goal: develop a neural wave function to model A=40 nuclei and beyond.

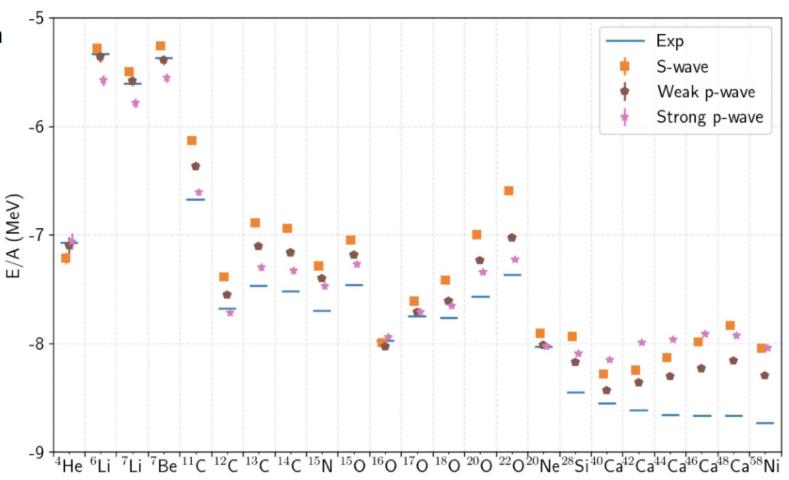
Method: neural Pfaffian ansatz with message-passing neural backflow.

Results: computed ground-state energies and radii for mediummass nuclei using different interactions (including p-waves).

Streamline: A. Lovato (Argonne),

J. Kim (Ohio)

Collaborators: B. Fore (Argonne)



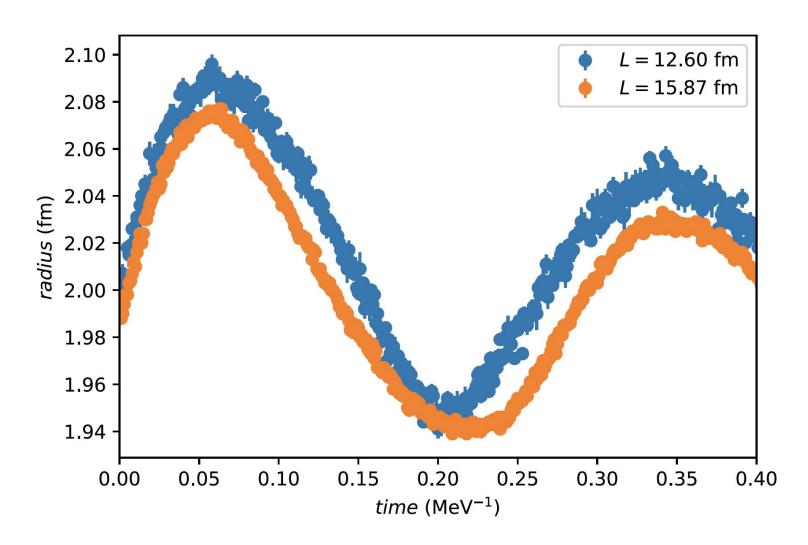
REAL-TIME NUCLEAR DYNAMIC WITH NQS

Goal: compute the quantum real-time dynamics of atomic nuclei.

Method: combine neural quantum states with time-dependent VMC

Results: computed the real-time dynamics of ⁴He induced by a monopole excitation using periodic-box boundary conditions.

Streamline: A. Lovato (Argonne), N. Rocco (Fermilab), Kyle Godbey (MSU)



Computing Nuclear Response Function via the Neural-network Quantum State (NQS) method

Reaction calc

expansion

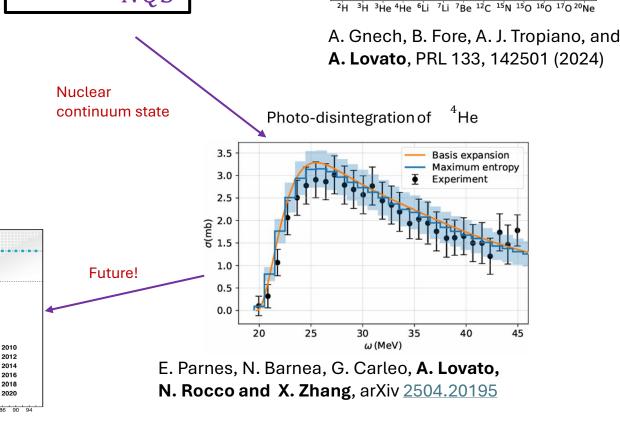
 NQS: a scientific computing method for quantum many-body studies

 One frontier: computing many-body scattering and reactions

 STREAMLINE members actively developing nuclear NQS

 STREAMLINE project: first NQS computation of nuclear response functions

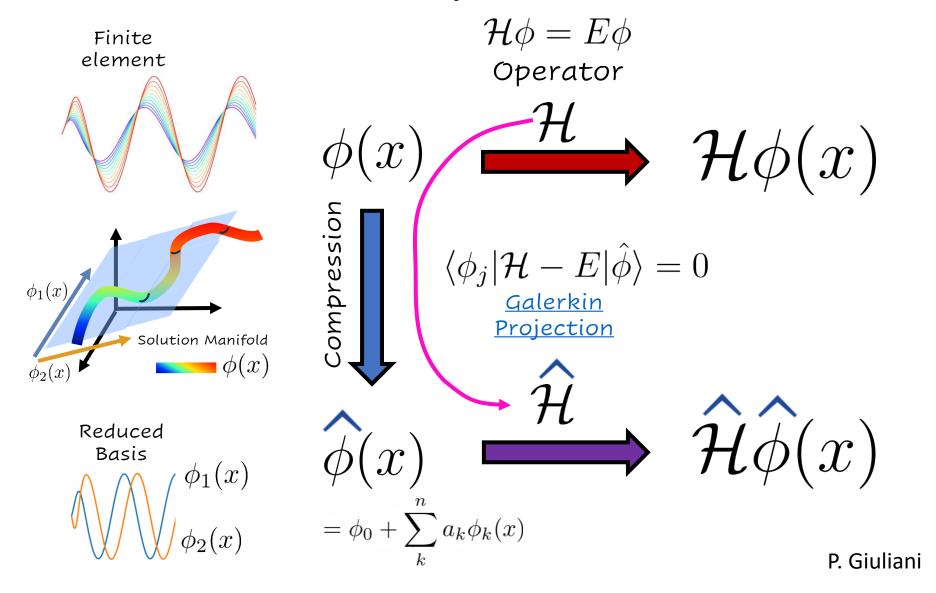
2020



Nuclear ground state

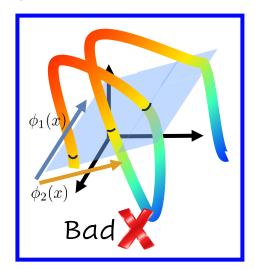
Exp $R_3 = 1.1 \text{ fm}$ $R_3 = 1.0 \text{ fm}$

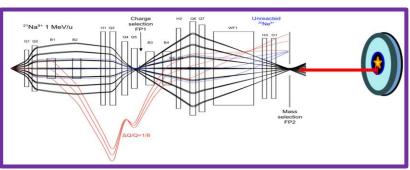
Dimensionality Reduction



Challenge

2) Because linear embedding is not good





(experimental control)

1) Because operators are challenging

The Woods-Saxon function is defined as

$$f_{\text{WS}}(r, R, a) = \left[1 + \exp\left(\frac{r - R}{a}\right)\right]^{-1}.$$

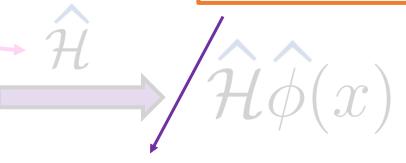
$$\mathcal{H}\phi=E\phi$$
 Operator

$$\mathcal{H} \to \mathcal{H}\phi(x)$$

$$\langle \phi_j | \mathcal{H} - E | \hat{\phi} \rangle = 0$$

<u>Galerkin</u> <u>Projection</u>

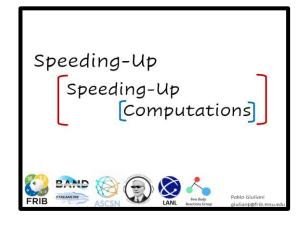
What if this is a problem?

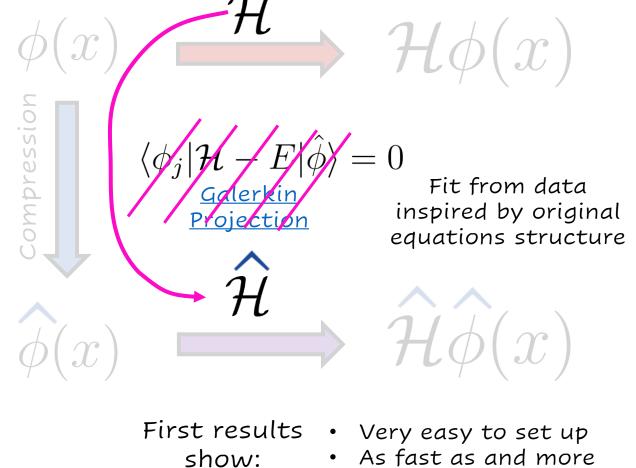


3) Because there are no equations to project

Solution: Operator Learning

<u>Pablo talking for</u> <u>an hour on this</u>





 As fast as and more accurate than Galerkin

Scientific pipelines

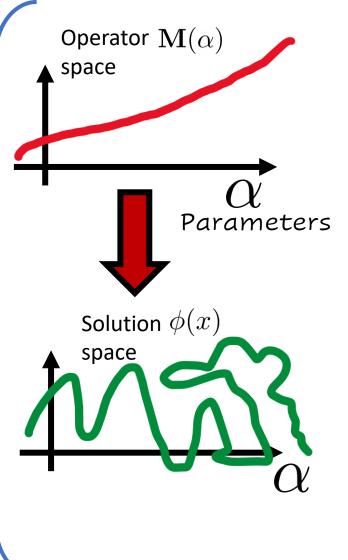
<u>Pablo talking for</u> <u>an hour on this</u>

Speeding-Up

Speeding-Up

[Computations]

Ideal for
STREAMLINING
producing
emulators for
nuclear physics



Symbolic Regression for Model Discovery

Charge densities are not just proton densities but are close in comparison. **Symbolic regression** is a machine learning method that provides an **explainable AI framework**. These methods give **explicit expressions which can be directly scrutinized** as opposed to other closed-form methods (neural networks, Gaussian processes, etc.).

Once discovered, these expressions open avenues of exploration in the realm of model emulation, model discovery, and direct comparison to experimental data...

At MSU, we have tested the method to discover closed form corrections to nuclear charge densities and are currently developing a framework for **data-driven discovery of novel energy density functionals**.

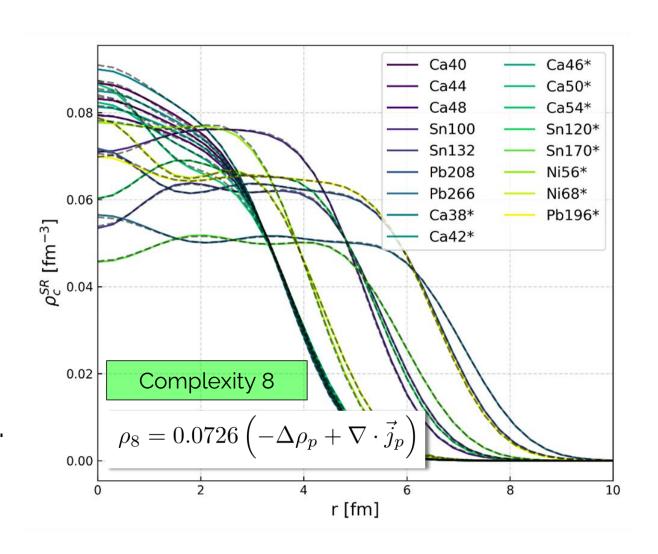
Josh Belieu

with
Kyle Godbey
and
Witek Nazarewicz

Discovering Charge Densities and Radii Corrections

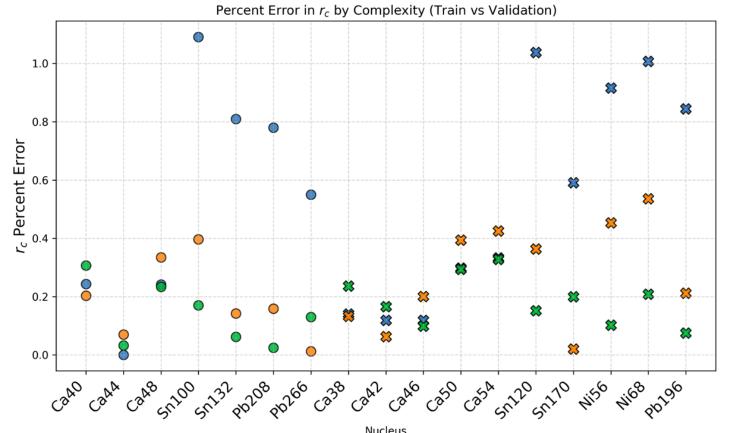
Complexity is a measure of how complex an expression is where variables and operations have a complexity of one. A symbolic regression expression (misc. coloredsolid) with a complexity of 8 is able to recreate target data (black-dashed) quite reliably.

Validation nuclei are marked with asterisks, training nuclei are unmarked. Training data was generated using SLy4 functional.



Discovering Charge Densities and Radii Corrections

Relatively low complexity expressions give **sub 1% error** in predicted charge radius.

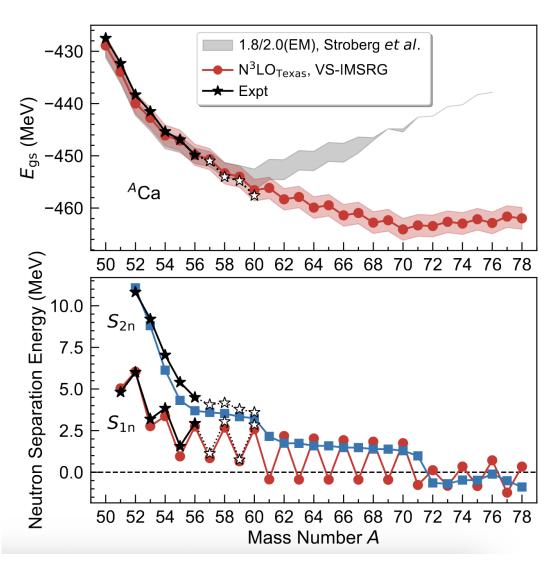


$$\rho_{3} = -\rho_{p} \Delta \rho_{p} - 7.39 \cdot 10^{-7}$$

$$\rho_{6} = -0.0768 \Delta \rho_{p}$$

$$\rho_{8} = 0.0726 \left(-\Delta \rho_{p} + \nabla \cdot \vec{j}_{p} \right)$$

Emulators were key in the development of a new interaction from chiral effective field theory



The challenge:

- Ab initio computation found that ⁶⁰Ca is the most neutron-rich nucleus that the strong force can bind. This is at odds with experimental trends and results from energy density functionals
- Uncertainties in such ab initio computations are large
- Clearly, we need to develop more accurate and precise nuclear interactions

Solution:

 Use reduced-order models ("emulators") to adjust the low-energy coefficients of a new interaction with N³LO terms; this is N³LO_{Texas}

Results:

- Calcium isotopes nuclei are now predicted bound
- Top fig.: ground-state energies of calcium nuclei
- Bottom fig.: neutron separation energies

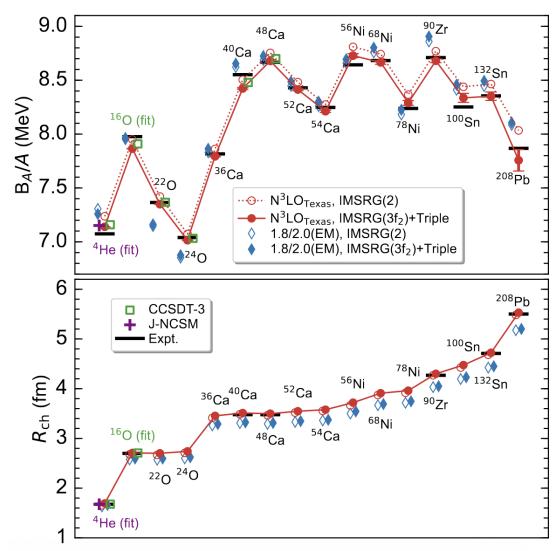
Emulators were key in the development of a new interaction from chiral effective field theory

Results (cont'd):

- Binding energies are accurate for light to heavy nuclei (see top figure)
- Charge radii are accurate for light to heavy nuclei (see bottom figure)

Summary:

- The new interaction N³LO_{Texas} exhibits accurate saturation properties across the nuclear chart.
- Usage of N³LO terms in the nucleon-nucleon crucial
- This moves the neutron dripline in calcium to about ⁷⁰Ca.



Parametric matrix models (PMM)

nature communications

Article

https://doi.org/10.1038/s41467-025-61362-4

Parametric matrix models

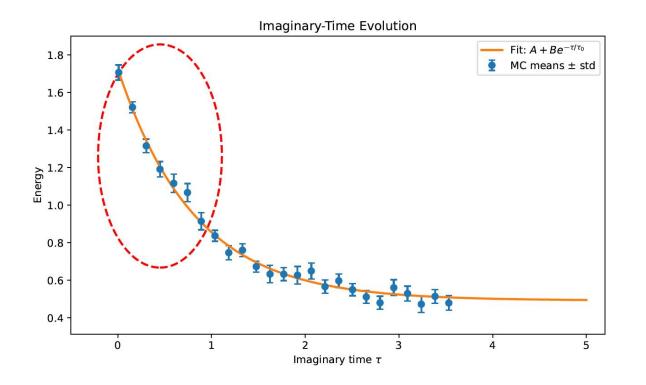
Received: 27 January 2025

Accepted: 18 June 2025

Patrick Cook **⑤** ^{1,2,5}, Danny Jammooa **⑥** ^{1,2,5}, Morten Hjorth-Jensen **⑥** ^{1,2,3}, Daniel D. Lee **⑥** ⁴ & Dean Lee **⑥** ^{1,2} ⋈

Patrick Cook

Danny Jammooa



$$E(\tau) = \frac{|c_0|^2 E_0 e^{-2E_0 \tau/\hbar} + |c_1|^2 E_1 e^{-2E_1 \tau/\hbar} + |c_2|^2 E_2 e^{-2E_2 \tau/\hbar} + \cdots}{|c_0|^2 e^{-2E_0 \tau/\hbar} + |c_1|^2 e^{-2E_1 \tau/\hbar} + |c_2|^2 e^{-2E_2 \tau/\hbar} + \cdots}$$

Nonperturbative Ground State

Governing Equations

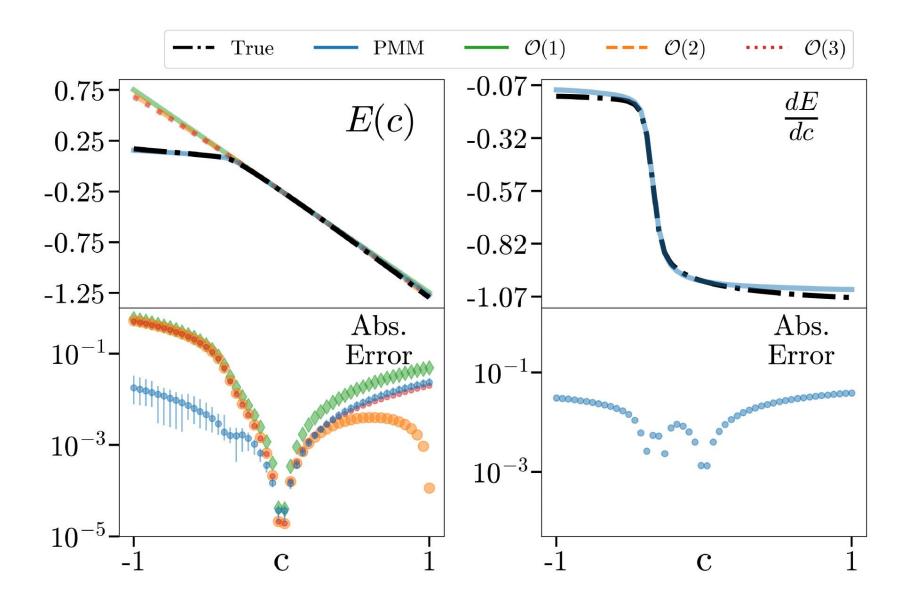
PMM Equations

$$|\psi_{i}(t)\rangle = e^{-H_{0}t/2}|\psi_{i}(0)\rangle \qquad |\phi_{i}(t)\rangle = e^{-\underline{M_{0}t/2}}|\underline{\phi}_{i}(0)\rangle$$

$$\mathcal{M}_{ij}(t_{1}, t_{2}) = \langle \psi_{i}(t_{1})|O|\psi_{j}(t_{2})\rangle \qquad \hat{\mathcal{M}}_{ij}(t_{1}, t_{2}) = \langle \phi_{i}(t_{1})|\Delta|\phi_{j}(t_{2})\rangle$$

$$O \in \{H_{0}, H_{I}, \rho, R^{2}\} \qquad \Delta \in \{\underline{M_{0}, M_{I}, p, r}\}$$

▶ Once PMM is trained on data only as a function of t, can it predict the ground-state energy of H(c) and the expectation of other observables for any c?



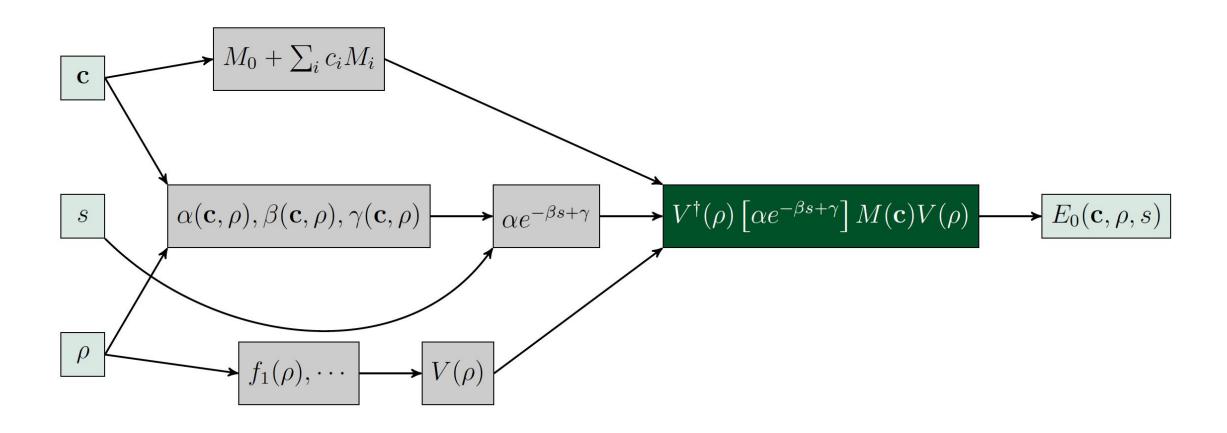
N³LO IMSRG(2) Calculations of Symmetric Nuclear Matter

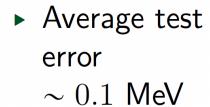
$$H(\mathbf{c}; \rho, s) = H_0(\rho, s) + \sum_{i=1}^{4} c_i H_i(\rho, s)$$

Can we calibrate the 4 LECs c to reproduce empirical saturation properties?

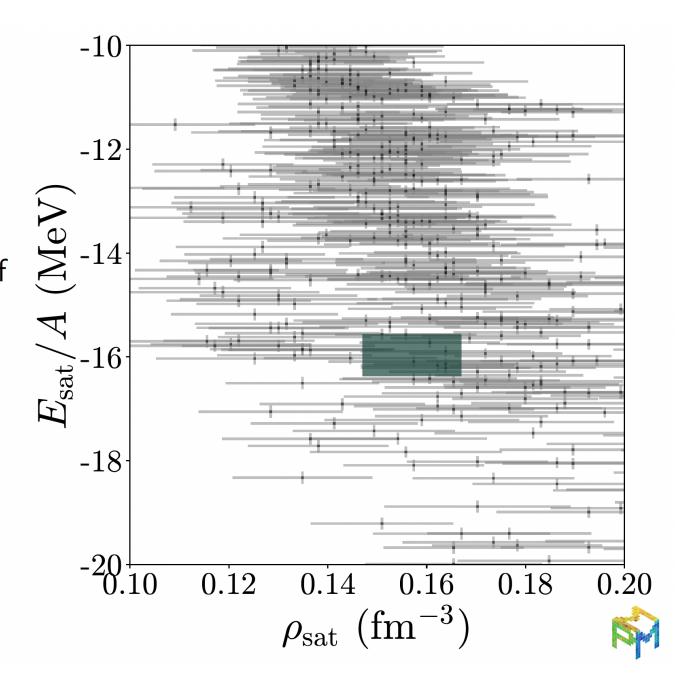
- Single calculation requires $\sim 10+$ hours on an H100
- Need to sample potentially thousands of LEC sets
- $\sim 50\%$ of flows diverge

- Unknown dependence on flow parameter s
- Basis dependence on density ρ
- Uncertainty quantification

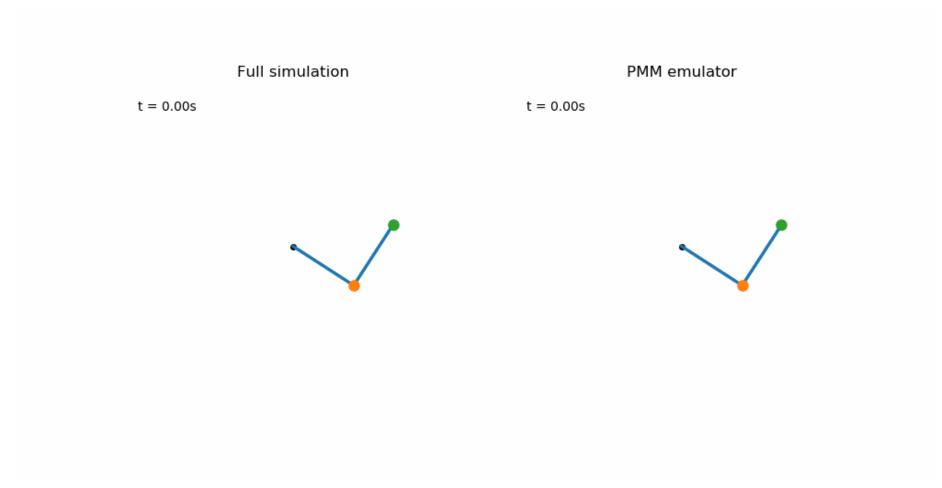




- ▶ 1000 samples of LECs, ~ 22 minutes on personal PC
- ► < 1.5 seconds per prediction
- $\sim 10^4 \times$ speedup



Double Pendulum



STREAMLINE

SmarT Reduction and Emulation Applying Machine Learning In Nuclear Environments

DOE NP AI/ML PI Exchange Meeting November 19 – 20, 2025

