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Overview

- Ming Liu (LANL)
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Data Taking: 2023 - 2025

Hadronic Calorimeters
Electromagnetic Calorimeter

Time Projection Chamber
(TPC)

ntermediate Tracker (INTT)

Minimum Bias Detector
(MDB)

sPHENIX at RHIC

MicroVertex Detector
(MVTX)

TPC Outer Tracker

LONG RANGE PLAN o,

for NUCLEAR SCIENCE
@
2015 NSAC Long Range Plan for Nuclear % = S ~N

Science priority: SPHENIX Experiment at RHIC N : D @ o

Y(1s) 0.28fm

Y(2s) 0.56fm
Y(3s) 0.78fm

Quarkonium spectroscopy

vary size of probe /

“Parton energy loss w

vary mass/momentum of probe
u,d,s

® Probe the inner workings of QGP by resolving its
properties at shorter and shorter length scales Jetstmcwrﬂs\p%@

®* Complementary to LHC experiments to study T oo prove
relativistic heavy-ion collisions

Cold QCD

study proton spin,
transverse-momentum,
‘ and cold nuclear effects

Heavy Quark physics — a key pillar of RHIC science
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Project Goals and Deliverables:
- Heavy flavor event Al-trigger demonstrator in p+p

Selective streaming real-time Al and autonomous detector control:
Deliver a demonstrator for p+p and p+A running for sPHENIX - generalizable for
applications in experiments at the EIC

INTT Silicon Strips:
78um x 16mm (A)/20mm (B)
—

N )
V"3 \\

4 interconnected key tasks:
-y Constraints:
MVTX data rate = 300 kHz
INTT data rate = 9.4 MHz
Trigger latency = 10us

sPHENIX Tracking:
- MVTX + INTT(fast)
- TPC(slow)

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

|
I Task 3 | '-
I L]
e
| SPHENIX : : e e ] —— _ -
| MVTX (Si Pixels) I BN
Identify B-hadron event: | onhne
- To'pology of B decay, | INTT (Si Strips) buffer
with large DCA | Offline data
- Monitor collision point I TPC ’ processing
A
I
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Leadership and Technical Roles Team of NP + HEP + CS/EE

Los Alamos National Laboratory, Ming Xiong Liu, (Lead Principal Investigator)
Fermi National Laboratory, Nhan Tran, (Co-PI)

Massachusetts Institute of Technology, Gunther M Roland (Co-PI)

New Jersey Institute of Technology, Dantong Yu (Co-PI)

Leadership structure of the team The project team will be led by Lead Principal Investigator, Dr. Ming
Xiong Liu of LANL, who is accountable to the DOE program leadership for the project’s overall success.
The team shares the responsibility and accountability for success. Within that structure, lead roles are
assigned to co-Principal Investigators (co-PIs), also referred to as key personnel. Dr. Liu will be the lead for
hardware design. Dr. Gunther Roland will be the physics lead in SPHENIX and EIC. Dr. Tran will be the
lead for Co-Design of Al software and Hardware. Dr. Yu will be lead for Deep Neural Networks Software
Design.

New teams joined later in 2022/2023:
Dr. Jo Schambach, ORNL, sPHENIX/EIC readout integration, SPHENIX MVTX and EIC/ePIC readout lead
Dr. Kai Chen, CCNU, FELIX-AI-Trigger hardware integration, FELIX developer at BNL for ATLAS, also sPHENIX
Prof. Song Fu, NTU, data acceleration in ML
Prof. Callie Hao, GaTech, Al algorithm/Firmware in ML
12/05/2023 Fast-ML Status and Plan @DOE Presentations 6



Technical Approaches and Highlights -1 s

* Objective 1 — Design, build, simulate, and benchmark a prototype streaming readout system
with Al-based fast online data processing and autonomous detector control system that meets
the physics and engineering requirements. To support this objective, we first aim to generate a
large volume of simulation data for heavy flavor decay events. We plan to design a prototype in the
simulated and the real SPHENIX experimental environment and later apply the technology in the high
luminosity EIC experiments at RHIC. Our objective is to create a working prototype that serves as
a baseline and template for future upgrades. With this prototypical working solution, we target to
improve the heavy flavor samples from the current 0.05% yield to more than 10+%. (Task 1)

s FastML Demonstrator setup at BNL

S

L — ll sSPHENIX DAQ rack room, summer 2023

‘AJ 7]~ -

FAMD Linux s'éfve"\r, "
Illireuxr12, 182\

-

/€709 FELTXC 709

-
/

summer stithas t
erver in SPHENIX, 202

eed FPGA/AI
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Technical Approaches and Highlights - Il pantong

* Objective 2 — Design advanced deep neural networks commensurate with sSPHENIX/EIC stream-
ing data requirements. We aim to design deep neural networks with the following goals: (a) network
size: neuron weights that fit in the FPGA block RAMs (BRAMs) of the FELIX cards in sSPHENIX/EIC
experiments, (b) handling the extremely low signal-to-noise ratio of hit images due to the sparse read-
out of the high-resolution MVTX and INTT detectors, (c) performance improvements: 10% improve-
ment over state-of-the-art triggering algorithms, and (d) minimal performance gap between simulated
data and real experiment readouts, and outstanding generalization capability. (Task 2)

Identify B-hadron event: MVTX
- Topology of B decay, Labelled Track Hits . Displaced Verices Al Algorithm block
. Displaced Vertex
with |arge DCA Silicon Pixel Hits Reconstruction o
rigger
= Monitor CO||iSi0n pOint B.”~ Graph Track Bipartite Trigger Decision (HF _
o’ Reconstruction identification) g

i,/
— g

‘\

Track Momentum Regression
Reconstructed Track Momentum

stable beam:

dixy)~100um DCA_XY
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Technical Approaches and Highlights - [I] ~ #ermeriever

* Objective 3

resources, and can achieve full throughput. (Task 3)

Keras
TensorFlow
PyTorch

Compressed
model

Machine learning model
optimization, compression

12/05/2023

— Deploy advanced deep neural networks within the FELIX system that are capable
of real-time reconstruction of heavy flavor events at high throughput. With the development of
advanced deep neural networks, a parallel strategy is needed to ensure that these networks can be
designed to operate at low latency and high throughput on the FELIX FPGA cards. This challenge
involves detailed Al/hardware co-design to ensure that the desired algorithms can be fit within existing

hls 4 ml FPGA flow

HLS
conversion

' ASIC flow

Tune conflguratlon
latency, throughput,
POWEr, resource usage,

Also manual model implementation with primary focus:
- achieving low latency
- real-time processing of data
- deployment of algorithms with high efficiency

e Task: Take predefined algorithm in PyG to implement on FPGA with minimized
latency
o Use manual approach within FPGA and latency constraints ( < 10 us)
o Measured end-to-end on FPGA board (as opposed to simulation)

e Approach: Use architecture based on Flow GNN
(https://arxiv.org/pdf/2204.13103.pdf)

o Synthesizable C++ via High Level Synthesis (HLS): translate the Pytorch model
into C++ without pointers, recursive, or dynamic memory

o Optimized C++ in HLS: apply hardware optimization techniques to reduce
execution latency and resource usage

Fast-ML Status and Plan @DOE Presentations 9



Successes and Challenges

SPHENIX status

- installed and commissioned in summer 2023
- Run23 ended prematurely due to accelerator hardware failure
- delayed FastML-sPHENIX DAQ integration

- MVTX installed on time and partially commissioned
- successfully took cosmic ray data with other sPHENIX detectors (INTT, TPOT, TPC)
- successfully commissioned SRO

- INTT installed and partially commissioned
- successfully took data with other subsystems (MBD, TPOT) in triggered mode
- successfully demonstrated SRO

- Run 2024 will start ~March, 2024
- Au+Au and p+p
- DAQ and Al-Trigger integration

Work in progress and challenges B\ A
- improve algorithms SPHENIX Internal
- optimize FPGA resource usage Cosmic run
- MVTXand INTT SRO integration into FPGA/AI-Trigger i L
- SPHENIX DAQ system integration ’

- Beam backgrounds

- remote computer/hardware access for non-sPHENIX collaborators
- demonstrator setup in sSPHENIX at BNL

- setup a standalone at MIT for small testings and development

Summary of expenditures

- total budget, $1,500K (FY22-FY23), arrived late in 2022;

- no-cost extension

- Stage-ll project funded, $S1,600K (FY24-25), funding received

FY 20XX FY 2022 FY 2023
a) Funds allocated 750K 750K
b) Actual costs to dat 50K/LANL $410K/LANL .
) Actunlcosts o date SSKIMIT | S400K/MIT A cosmic event seen by /
82K/FNAL $150K/FNAL
SNt ookt MVTX and INTT (and TPC) %
¥ 4
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Electron Tagging - DIS Event Identification

Selective streaming readout for Al-Engine:

* tag DIS-electron to define DIS event ID e
o EMCal + Trker + PID

* tag other rare must-keep physics signals
o HF with Trker etc. N

1 e-tagger + Evt-ID

!
I
I Adaptive QL

Timing Detector Learning

|
|
System Control K::
|
1
|

SRO + Al/ML Fast Data Processing:
- DIS e-tagger: event ID
+ other rare process, HF-tagger etc. ...

Online
Data Filter
| & Monitoring Buffer Box
Netyork
Switch

I

iy

. I

0(2 Pbps) > 0(10 Thps) > 0(0.5 Tbps) >| 0(0.1 Tbps) >
I
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Summary and Outlook

* Produced full sPHENIX physics and detector simulations of
heavy quark and QCD backgrounds

* Successfully developed preliminary Al-algorithms for sPHENIX
HF triggers

 sPHENIX installed and commissioned in summer 2023
o Completed MVTX SRO
o Demonstrated INTT SRO

. Sult_:lc)?ssfully implemented a toy Al-algorithm in HLS4ML in
FE

* Work in progress to implement full sPHENIX HF Al-trigger in a
simplified hardware

Future plan:
* Implement the demonstrator for sSPHENIX p+p runin 2024

* Further develop EIC/ePIC SRO with Al/ML for EIC CD2(2025) and
CD3(2025) based on our work

- Funded to continue R&D in FY24-25

Note: completed;

12/05/2023

Fast-ML Status and Plan @DOE Presen

TASK 1 TASK 11 TASK III TASK IV

Year 1

1. Software development and system design. We will first perform detailed sSPHENIX physics and detector simulations
to design a real-time fast data processing and autonomous detector contrjol and calibration system. In the meantime, we
will survey currently available Al models and design a system for offline training and domain adaptation for data and
MC. The physics and detector simulation results and the performance of hardware are used to tune the Al algorithms.
2. Hardware development and system integration. We will take advantage of the streaming readout capability of
the SPHENIX tracking system to implement continuous readout of two fast silicon tracking subsystems, MVTX and
INTT. A FPGA based fast tier-1 Al system will be developed to identify heavy flavor (HF) events in p+p collisions,
and generate a fast trigger to initiate the readout of TPC.

By Q2

» Generate open heavy
flavor and QCD back-
ground events for simula-
tions (LANL, MIT)

» HF trigger algorithm
development for FPGA
(FNAL, LANL, NJIT)

» MVTX streaming read-
out (LANL)

» INTT streaming read-
out (MIT)

» Beamspot interaction
and readout simulation
(FNAL)

» Displaced tracks and
anomaly simulation
(FNAL, MIT)

By Q3

» Develop fast tracking
algorithms using MVTX
and INTT hit information
(LANL, MIT, NJIT)

By Q4
» Complete a prelimi-
nary design of HF trig-
ger Al offline (FNAL,
LANL, NJIT)

» Design real-time GPU
training machine (MIT,
NJIT)

» ML, Graph NN train-
ing, by NJIT and MIT

» hlsdml
tation and

development
MIT)

implemen-
algorithm
(FNAL,

» FPGA  implementa-
tion of HF trigger with
MVTX and INTT (A1)

Year 2
We will focus on the system integration and continue to improve and benchmark the performance of software,
firmware, and hardware system.

» Preliminary design of
streaming and automated
controls of online GPU-
based ftraining system
(MIT, NJIT)

» Simulation and training
(MIT, NJIT)

By Q5 & Q6
» Interface between » Design  new GNNs » hls4ml customization  » GPU deployment for
Al system and MVTX (Encoder, Attention, for FELIX board (FNAL, autoencoder and training
detector Data Input by Particle-Net) algorithms LANL) (FNAL, MIT)
(FNAL, LANL) with  hls4ml (MIT, | [»FPGA, GPU systemin-
» Interface between Al NJIT) tegration and evaluation
system and TPC Readout (MIT, NJIT)
Control (FNAL, LANL)
By Q7
» Continue to improve | [» Improve algorithm » Multi-FELIX Board  » ML model and domain
algorithms for HF tag- with hls4ml on FPGA Integration (LANL) adaption update (MIT,

ging (LANL) (FNAL, NJIT) » Validation and test with NIIT)
FELIX boards (All)
By Q8
tations » Benchmark system performance with sSPHENIX or test beam data (All)




Physics
simulation and
=il Al-ML algorithms
Al :
q

- Dantong Yu and Giorgian Borca-Tasciuc (NJIT)
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X

O
Q
- @8- 8-
. O
- Robustness and Algorithm

Accuracy Improvem ent Set Encoder with Bipartite Aggregator (SEBA) Blocks

Progress

. Latency Improvements in 5 5
Tracking Algorithm oout | ’ [ I a |
- Track-Based Trigger Prediction O O ‘ O
Algorithm o o
& \_ SEBA Block /
- Hits-Based Trigger Prediction
Algorithm Track Nodes Aggregators
. . @ B 7 @Y
- Pileup Handling o -
- Robustness Verification ® s
P

o T ' _
o 0
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Robustness: Data Augmentation

Hits belonging to a track are perturbed to different points on the
particle’s trajectory

Model learns more general classification function based on trajectory

instead of fixed layer locations

o Old Hits (On Detector Layer)
New Hits (Anywhere on particle path)

Helps improve both robustness and final accuracy -~ Partcle Path

o ..
..
.

Robust to detector alignment. Tel



Robustness:
- Multi-Task Learning in Trigger Prediction

Multi-Task Learning: Track embeddings used to predict whether two

tracks come from the same parent particle
o Additional adjacency-matrix component added to the loss function:

o L= LCE(trigger e, triggeriye) + LCE(Ajreq, Avrue)

Regularize the model with additional physical structural information
about the event.



Algorithm Accuracy Improvements

e Applying previous techniques, accuracy for both ground truth and
predicted tracks (fully end-to-end) improved. Improved Model (in
Bold) v.s. the old model in italic without data augmentation.

O +3.7% for GT Tracks
O +2.5% for predicted tracks

Data Year Accuracy Efficiency Purity BRR
GT Tracks 2023 90.2% 96.1% 6.20% 85.4%
Predicted Tracks (also | 2023 86.5% 92.6% 4.62% 80.7%

includes tightened
constraints)

Predicted Tracks 2022 84.0% Note: predicted probability cutoff of
0.5 is used for efficiency/purity, and

accuracy calculations
GT Tracks 2022 87.5%



Efficiency/BRR with ROC

Ground-Truth Track Efficiency/BRR Plot

B I

1.0 -

1.0 -

o
(o)
|

[0}
W ©
4{% 0.8 - o
< 5
C et
o g 0.6 -
4
8 0.6 E
o
o -
No] g 0.4 -
S 04- o
(@] (@)]
— V4
i>A S
O 5 0.2
8 0.2-

0.0 -
OO - |
] | | [} ] ] OO
0.0 0.2 0.4 0.6 0.8 1.0

Efficiency
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Efficiency/Purity Under 1% Signal Rate

Ground-Truth Track Efficiency/Purity Plot

0.4 -

0.3 -

Purity

0.2 -

0.1-

0.0 -

0.0

12/05/2023

0.2

0.4 0.6
Efficiency

0.8

0.35 -

0.30 -

0.25 -

0.20 -

Purity

0.10 -

0.05 -

0.00 -

1.0 0.0
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Latency Improvements in Tracking Algorithm

Geometric constraints are used to determine edge

. . . 1, 1z, Maximum Edge Candidat
candidates for tracking algorithm Y e T TRR R
Latency_Accuracy tradeoff exists: 0 0.025005 102.000000 0.885895 1030.0

o Permissive geometric constraints allow more true 1 0014881 16.000000 0.885360 548.0
edges to be captured in the edge candidate 5
0.011599 155.000000 0.884555 638.0
set—>Improves Accuracy
o Restrictive geometric constraints reduces the number 3 0.026555 113.000000 0.884320 1077.0
of edge ca ndidates - ImprOYes Latency . 4 0024582 178.000000 0.883860 1022.0
Run experiments to determine effect of geometric
. . o 0.010320 48.000000 0.882630 556.0
constraints on final trigger performance, 6
assuming a perfect tracking algorithm POTEIE TREIE AR 10
7 0.030000 200.000000 NaN 1171.0

We can reduce the maximum edge candidates by
~50% with little accuracy penalty



Hits-Based Trigger Prediction Algorithm

Co-design means trade-off between accuracy and latency. If we skip the tracking
and directly predict trigger from hit graph, we will significantly reduce the latency
and cost on FPGA acceleration.

Implemented End-To-End trigger pipeline that removes intermediate tracking step

Some performance loss, but large improvement in parameter count and latency

Input Type Parameter Count Accuracy

Single-Event Hits 776 72.58%



Pileup Handling

- As-implemented, tracking and trigger algorithm need to deal with
pile-up

retrain the tracking algorithm with the hits of 20 MVTX events and 1
INTT events. Target is the tracks of the single event within the INTT.

. Tracking algorithm takes the 20 events and produces the tracks from
a single event

Use 20-event pile-up, determine end-to-end accuracy

We achieve an end-to-end accuracy of 78%. Less than a <10%

reduction in accuracy despite a large increase the complexity of the
problem



Robustness Verification with Explainable Al

Trigger Event: Predicted Track Keep Probability

Il Non-Trigger Tracks

Ensure our trigger models are making decisions on - T
a physically-sound basis and thus will work outside
the simulation

4000 -

Count

3000 -

2000 -

Use Bernoulli LRI technique (bLRI) to probe which J
tracks the model is using to make decisions RO R
o Model is penalized for not dropping tracks, thus it will rrigger Event: Track Keep Probabilty

8000 BN Non-Trigger Tracks

B Trigger Tracks

only keep tracks important to the final decisions

For both end-to-end and ground-truth tracking
models, the model chooses to drop non-trigger -
tracks and keep trigger tracks: physically sound!

0.4 0.5 0.6 0.7
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hlsdml translation and
firmware implementation

- Hannah Bossi (MIT) and Jovan Mitrevski (FNAL)

24 Fast-ML Status and Plan @DOE Presentations 12/05/2023



Model Implementation on FPGA

e Task: Take TrackGNN (implemented with PyG) to put on FPGA with minimized latency
O Use approach within FPGA and latency constraints ( < 10 us)
O Measured end-to-end on FPGA board (as opposed to simulation)

e Approach # 1: Manual approach for model instance based on FlowGNN
(https://arxiv.org/pdf/2204.13103.pdf)

o Synthesizable C++ via High Level Synthesis (HLS): translate the Pytorch model
into C++ without pointers, recursive, or dynamic memory

o Optimized C++ in HLS: apply hardware optimization techniques to reduce
execution latency and resource usage

e Approach #2: Automated firmware generation with hls4m|

o Python package for machine learning inference on FPGAs

O Recent progress to implement GNNs in hlsdml


https://arxiv.org/pdf/2204.13103.pdf
https://fastmachinelearning.org/hls4ml/

Detailed Solutions — Implementation 1

* TrackGNN model

O 5 layers; node/edge embedding MLP: 64 dimensions, 4 layers

* Implementation Results
O Tested with: 100 nodes, 140 edges
O 150 us per graph (Freqg. 130 MHz)
O 130 us per graph (Freqg. 180 MHz)

* Utilization (Alveo U280)

O LUT: 308K (23.7%), FF: 378K (14.5%)

250

200 A1

.

O BRAM: 1,025 (50.8%), DSP: 1,426 (15.8%) -

12/05/2023
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Detailed Solutions — Implementation 1

* TrackGNN model

o 5 layers; node/edge embedding MLP: 64 dimension, 4 layers
e Implementation Results

o Tested with: 100 nodes, 140 edges‘/ * Too slow!! Target is < 10 us
o 150 us per graph (Freq. 130 MHz)/ % Hardware has almost reached its
maximum capability
o 130 us pergraph (Freq. 180 MHz) % Needs to redesign the algorithm
¢ Utilization (Alveo U280)

o LUT: 308K (23.7%), FF: 378K (14.5%)
o BRAM: 1,025 (50.8%), DSP: 1,426 (15.8%)



Detailed Solutions — Implementation 2

Simplified TrackGNN model by software team

o 1 layers; node/edge embedding MLP: 8 dimension, 4 layers

- Implementation Results

o Tested with: 92 nodes, 142 edges 250
o 8.82 us per graph (Freq. 285 MHz) 200
o 14.7x speedup! f
. Utilization (Alveo U280) ke B
o LUT: 194K (14.9%), FF: 214K (8.2%) N
> DSP: 488 (5.4%), BRAM: 406 (20.2%) e

12/05/2023 Fast-ML Status and Plan @DOE Presentations
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Detailed Solutions — Implementation 2

* Simplified TrackGNN model by software team
o 1 layers; node/edge embedding MLP: 8 dimension, 4 layers
e Implementation Results

o Tested with: 92 nodes, 142 edges % Smaller model improves both

latency (14.7x) and clock
o 8.82 us per graph (Freq. 285 MHz) frequency (1.58x)
o 14.7x speedup! * More aggressive quantization is

e Utilization (Alveo U280) expected to be helpful

o LUT: 194K (14.9%), FF: 214K (8.2%)
o DSP: 488 (5.4%), BRAM: 406 (20.2%)



Detailed Solutions — Tracking + Triggering

Trigger model is needed to be included, following TrackGNN

o The latency limit is still 10 us but TrackGNN itself is already 8.82 us
Algorithm innovation: combined tracking and triggering

o Modified TrackGNN + graph level aggregation for triggering
Implementation Results

o Tested with: 92 nodes, 142 edges

o 9.2 us per graph (Freqg. 180 MHz) - still within 10 us!

Utilization (Alveo U280)

o LUT: 241K (18.5%), FF: 236K (9.04%), DSP: 969 (10.7%), BRAM: 594 (29.5%)



Firmware Implementation with his4ml at a Glance

https://fastmachinelearning.org/hls4ml/ https://arxiv.org/pdf/2112.02048.pdf

Training
with

"' PyTorch
‘;‘ Gez)lmZ;:ic '

- hls 4 ml

Vivado backend

Serialized \ PyG-to-HLS
model —_ model Project writer _
(model.pt file) TS e >
nnet_utils \
C synthesis,
Conﬁguratlon Optlmlzers Logic synthesis,
precision, reuse factor, merge layer IP export
str: t gy clone ar ays
& XILINX
®

his4ml is a compiler taking Al models in TF/Keras, PyTorch, or
ONNX, producing HLS for deployment on FPGAs and ASICs.
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https://arxiv.org/pdf/2112.02048.pdf
https://fastmachinelearning.org/hls4ml/

his4ml for Real-time Al Deployment

Origin: to deploy neural networks in the Level-1 trigger on the CMS
Experiment at the Large Hadron Collider (LHC) at CERN

Widely used open source software
o GitHub: https://github.com/fastmachinelearning/hls4ml
o 950+ stars, 350+ forks, 45+ contributors, almost 30k PyPl downloads

Experienced his4ml developers are part of this effort, including
Nhan Tran, Philip Harris, Vladimir Loncar, Jovan Mitrevski

o Can extend the software to suit the needs of the project



https://github.com/fastmachinelearning/hls4ml

GNN Implementation in hls4ml

: ® Graphs are natural representations for physics purposes - shows data
" 7 points (nodes) and the relation between them (edges).
)T

‘l O Ex: charged particle tracking
My” e To fully realize GNNs for tracking, need implementation on FPGA due to
strict latency constraints

IN (nn. )
__init_ (self, input dim=3, hidden dim=8, n graph iters=1,
hidden activation='relu', layer norm= )
(GNN , self). init ()

. self.n graph iters = n graph iters
o Common SOftwa re used IS pytorCh self.input_network = make mlp(input dim, [hidden dim],
output activation=hidden activation,
. H H layer norm=layer norm)

geometrlc (PyG) = flrSt Step IS tO self.edge network = N (hidden dim, hidden dim,
hidden activation, layer norm=layer norm)

H self.node network = N N (hidden dim, hidden dim,
implement prototype for PyG model t i e e A U

e Already some progress towards this end! forvard(selt, inputs):

X, edge index = inputs

x = self.input network(x)

e See slides from London workshop for for 1 in’ range(self.n_graph iters):

.sigmoid(self.edge network(x, edge index))

mOre detalls self.node network(x, e, edge index)
::: O :
Py | O rCh return self.edge network(x, edge index)
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https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf

Preliminary Results

® Preliminary benchmark!
e Network inputs: 90 nodes, 140 edges (same as simplified TrackGNN)

O

{ Input network ]

—
[ E ]
|

® Input network:
O Latency ~ 0.2 us

iters times

Repeat for each layer

e Edge network
O Latency ~ 0.7 us

v

Node network ]

Repeat n_graph

e Node network —@

o fine estimation not yet done
Edge network
O Latency ~ 4 us [ ]

e Total latency estimation Q
o latency = input_network + layers * (edge_network + node_network + ~overhead) +
edge network =0.2 + 1*(0.7+4.0 + ~0.1) + 0.7 ~ 5.7 us (approximately)
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Demonstrator
Implementation

- Jakub Kvapil (LANL)
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sPHENIX Readout and AI-ML HF Trigger Integration

On Detector Rack Room

Front-End Module/Electronics
Data Collection Module

* Zero suppress, packing
SubEvent Buffer

& x20)
)
Y—— llector
= 2 3,58
| -
o
©
INNER HCAL
EMCAL SEB

Tracking
detectors

100+ Gigabit
Crossbar
Switch

~ 1 PB each

Buffer Box

Buffer Box

Buffer Box

iy

To Computing Centre
Buffer Box

Buffer Box

Buffer Box

FELIX (MVTX+INTT) -> Al/ML -> Trigger
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EBDC: Event Buffer and Data Compressor (x40)
* 6Xx MVTX, 8X INTT, 24x TPC
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The timing and trigger distribution

« The Global Level 1 Trigger (GL1) and the accelerator clock is distributed via
Granule Timing Module (GTM)

o GL1 trigger is used by calorimeters and the TPC

o GL1 transmits clock and trigger to the vGTM, which then transmits it to the FEE
= vGTM is the adapter to a given detector
= GL1 is maintaining the BUSY received from vGTM

Machine clock

Trigger Inputs LL1 Granule
* Upto4LEMO and =— Grantile
4 fibers — i

* OHCAL, MBD, EMC, = Granule
i —
iHCAL, SEPD, ZDC vGTM
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The Latency Constraints for the Trigger Delivery

 The TPC buffers can hold up to 30 us of data

o The goal of this project is to aim for 10 us collision-trigger latency to capture the TPC
stream

 The Calorimeter buffers can hold up to 6.4 ys of data
o Can we improve the latency down to 5 us to also capture the calorimeter stream?

 The latency breakdown

MVTX readout window 5 ps — not fixed interaction-readout latency!

IR -> Counting house ~ 0.3 us (81 m fibres)

FELIX -> Al data forward, decoder buffers, clustering ~ 0.6 ps (@240 MHz)
Tracking + Trigger decision (currently 8.82 us for TrackGNN model!)

Al -> GTM -> TPC FELIX (negligible, all three sits in Counting house)

a0 =
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The DAQ-AI Data Flow

« Motivation to use FELIX board:
o Use the sPHENIX FELIX infrastructure provided to the sPHENIX tracking detectors

o To reuse the PCle implementation (16-lane Gen-3) and software tools provided by the
FELIX developers

o Large amount of optical IO, on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E
(half the size of Alveo)

* The decision signal of heavy flavor event from the Al-Engine will be sent out via the LEMO
connectors to the sPHENIX GTM/GL1 system to initiate the TPC readout in the triggered
mode

« MVTX Readout FELIX Firmware is the best starting point -> could even lighten it more by
removing MV TX data processing

Post-Implementation LUT (663K) FF (1.3M) BRAM (2K)

MVTX Readout FELIX 87K (13.1%) 196K (14.8%) 879 (40%)
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The Firmware Design - Data Flow

Felix-712 e MVTX 144 links @ 3.2 Gbps and INTT raw
Trigger decision - data stream will feed two Al engines (one for
Al Engine each hemisphere)
\ > Monitoring o 24 links for MVTX and 24 links for INTT

per Al engine
o 8b10b protocol with links driven @
10Gbps
m tested up to 14 Gbps, with external
loopback measurement at FELIX
with BER < 107(-16)
Felix-712 e Raw MVTX and INTT data packets:
DAQ board M o 1 MVTX packet @5 us strobe

10 Gbps

- . Silicon m ~10 pp collisions (MB events)
detectors @2MHz pp collisions
data o 50 INTT packets @ 100 ns strobe

m Need to run GraphGNN 50 times!
e Data needs to be decoded, clustered, time
aligned and feed the neural network IP

MVTX :
INTT

3.2 Gbps

Very challenging project to fit in the FPGA resources!
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1 RU = stave

MVTX Decoder

24X

L g

ALPIDE stream

Event size interrupt

Global latency interrupt

_.@

CHIP MEM — E I HIT MEM = T: event builder
CHIP MEM — [ HIT MEM =
72x64 19x128
8X -
CHIP MEM — ﬂ HIT MEM " N
CHIP MEM — HIT MEM i

* Initial implementation of the FPGA-based MVTX decoder
*  Max 128 hits per chip stored (expected physics ~50, issues with beam background?)
o Maximum latency 532 ns @ 240 MHz (given by the buffer depth)
« The MVTX data latency depends on the actual collision time and hit occupancy
o To provide a fixed latency to the GTM a BC information from INTT is used
o An interrupts to event size/processing time are in place not so exceed the maximum latency
Separate memory per MVTX event to fast clear the data

12/05/2023

Fast-ML Status and Plan @DOE Presentations
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MV TX Decoder - Implementation

* Firstimplementation based on simulation and synthesis data

LUT (663K) FF (1.3M) BRAM Needed
(2K)
24x Event size interry| pt Global latency interrupt
Readout decoder (RDH DEC) | 431 701 0 per stave (x24) e [T cvent buider
19x128
Chip Memory 37 34 1 per chip (x216), per event (x2) —_—
PHTEV b
Chip decoder (ALPIDE DEC) 677 252 0 per chip (x216) "
Hit (pixel) memory 39 38 0.5 per chip (x216), per event (x2)
Total 189K (28.5%) | 102K (7.7%) 648 (30%)

e Latency
O RDH decoder is data distributor = only 1 clock latency (4.16 ns @ 240 MHz)
O CHIP decoder has read-to-pixel latency of 6 cycles (25 ns @ 240 MHz), total latency depends on
occupancy -> 2-3 cycles per pixel. It is expected to have around 50 pixels = 0.5 us
e Utilization
O A bit high, we still need to fit in the FELIX infrastructure, INTT decoder, and model
o The above design is fully parallelised, could reuse decoders and memory at the cost of latency
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MV TX Clusterizer

ALPIDE reads data out in double columns from 0 to 1023
o Decoded hits thus arrive double column-by-double column
Clusters can be assembled as they arrive
o No hits in the next columns three adjacent pixels means cluster is
ready to be sent out

After finding pixel with centroid, pixel can be divided into
grids to improve resolution using only 2 more bits

Can get 13.5 ym cluster resolution at the global level from
31 bits

o 6 bits to define layer and sensor number

o 4 bits to define chip number on the sensor

o 21 bits for cluster position on chip (9 for row, 10 for column, 2 for
quadrant)

After changing to global cluster position, detector layout has

become abstracted

12/05/2023 Fast-ML Status and Plan @DOE Presentations
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MVTX Clusterizer - WIP Results

gz 74 e Preliminary results show good agreement
2 3 SPHENIX offline E .
§ 10 E between sPHENIX algorithm and our mock
1600 fastML FPGA =
e E FPGA code.
1000F- . = e Good validation that algorithm logic is
800 = . .
600F- - = working, next step is to translate to VHDL
400 == = . g .
200F- — T— 3 o vitis hls can be used for this!
S BB e mee
nPixels in cluster = 13 E N BEIRE ST R MR 3. =
= O m —
,8 104_5__' LU RN R ORI S R AL TG LT LSRR LA L S AU '—g 2 55— =] —E -
S ; SPHENIX offline = é_? F = :
S A i ~ —10F =
© 10°F NP fastML FPGA E > - -
s = g 15 E|
: p— ] Q _20f - - =
102 E T _F " - = 2
? == ] s B = E
10;—_'_ et —; S _30? - _;
- = i asf 5 _ E
L FOTPE TN DTN DY T PR O T IR PN T T DO -
0 1 2 3 4 5 6 T —40— 5 10 15 20 25
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https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html

Outlook and Timeline

 Assemble each components together and iterate until FPGA resources and timing is met

* Integrate MVTX and INTT SRO

O MVTX will be re-installed at sSPHENIX in February
O First beam expected in March - time to test

2021 2022 2023 2024
Il BN BN B B . #

* Project funded * [Initial FPGA * Refine . Deploy device  ® Final design ¢ Deploy device

by DOE FOA bitstream interface at sPHENIX for EIC TDR at EIC
. Initial synthesis between pP/PA run (CD3)

simulations system and . EIC . Take

constructed detectors preliminary advantage of

TDR (CD2) new

« First data for technology if

alg.orithm f required

training We are here!
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Current plan has the RHIC facility shutting
down in 2025 and being modified for the EIC.

New systems include:
* Polarized electron source,
P * Injector linac,

* Electron cooler complex,
* Rapid Cycling Synchrotron(RCS)

EIC hadronaccelerator/ electronaccelerator: ° E | eCtro n Storage rl ng (ES R)I

storagering uses rapid cycling synchrotron
electron existing RHICring —
storagering "

* Interaction region (IR) with 1
detector,

e Capability for implementing 2 IRs
* Infrastructure improvements.

/ e e e

RHICrings
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12/05/2023

SRO + Al/ML Fast Data Processing:
- DIS e-tagger: event ID
+ other rare process, HF-tagger etc. ...

Timing
System

Detector
Control

ePIC |

| 0(10 Thps) >

Subsystem DAM/FLX

s

e-tagger + Evt-ID

Adaptive JL

Learning

(EMCal gain, tracking, vertexing, particle-ID ...)

Al-Engine (FPGA)
[DIS-electron Tagger]

Online
Data Filter

& Monitoring

Buffer Box

E

[ ©f0.1Tbps) >

(Calibration and Feedback)

Streaming Automated Control

DIS Event ID
(EBDC)

DIS Event ID
(EBDC)
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Trigger
decision

N\

10 Gbps

MVTX

INTT

12/05/2023

3 Gbps

Felix-712

Al engine - half

Test bench

- — hits
----- —T

v

clusters

NN algo

TTL
ecoter | PCle
ecoder/c |
TX luster NN 1P (RM5)
RX | b e
|
Felix-712
DAQ board
any
«— | preprocessing? PCle
TX —" | (RMS5)
“Normal
/
RX path”
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