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Outline

* Neutrinoless Double-Beta Decay in 7°Ge

e ML-Assisted Simulations

— Electronics Emulation and Validation (K. Bhimani, N.
Gray, N. O’briant)

e ML-Enhanced Analysis Tools

— Semi-Autonomous Data Cleaning (E. Leon, A. Bahena
Schott)

— LEGEND Baseline Model with Feature Importance
Supervision (A. Li, K. Kilgus)

— Other projects:
e Self-supervised learning (A. Li)
e Interpretable BDT for LEGEND Characterization (H. Nachman)
e MAJORANA DEMONSTRATOR Data Release (A. Li)
e Creating a Co-56 Training Data Set (G. Duran)
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From Beta Decay to Double Beta Decay

Beta Decay: Double Beta Decay:

n->p+e+ 1, 2N — 2p + 2e + 2V,
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From 2v[3( to Ov[3[3

Double Beta Decay:

2N — 20 + 2e + 2V,

Standard Model
Physics

Neuftrinoless Double Beta Decay:

2N — 2p + 2e°

New Physics!
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Why Neutrinoless Double Beta Decay?

e The discovery of OvBp decay would dramatically revise our
foundational understanding of physics and the cosmos

Lepton number is not conserved
The neutrino is a fundamental Majorana particle

There is a potential path for understanding the matter — antimatter
asymmetry in the cosmos, through leptogenesis I

There is a new mechanism demonstrated for the g |

LEGEND-1000 goal

generation of mass o |
e The search for OvBB decay is one of the g7 [ ITEPH‘KL‘Z‘Z'?SJVQ'
most compelling and exciting challenges £ |ep%
. . - 1024 L UCSB/LBL
in all of contemporary physics g " .
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The OvBp Signal
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a and B backgrounds concentrated on
detector surfaces
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Designing for Unambiguous Discovery

Simulated LEGEND-1000 example spectrum for Ty, = 10%8 yrs,
Bl < 10~ cts/keV kg yr, after cuts, from 10 years of data

e What is required for a discovery of Ov(33
decay?

e Long half-lives mean you need large
exposures. For 3-4 counts of Ovf3B at...

— 10%% years: 100 kg-years
— 10?7 years: 1 ton-year

— 1028 years: 10 ton-years

 Need a good signal-to-background
ratio to get statistical significance

* Avery low background event rate

e The best possible energy resolution

cts /keV / (10 tonyr)

2V[3B

8]

[—

OvBB
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3-4 events
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»
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leak into in Qggt20
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=0.1% FWHM
energy resolution

2080
Energy (keV)

At every stage, OvBpB searches in °Ge are designed for unambiguous discovery:
their goal is quasi-background free operation for their full exposure
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From the Current Generation to the Ton Scale

MJD Final Ovpp results: T10/1;,3/3 > 8.3 x10%°yrs

PRL 130, 062501 (2023)
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LEGEND-200: Taking data

= LEGEND-1000: Conceptual design
A o development continuing

arXiv: 2107.11462

GERDA Final Ovpp results: Tl%ﬂﬁ > 1.8 x10%%yrs

PRL 125, 252502 (2020)
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Germanium Detector Innovation

(Semi)-Coaxial

e Large mass (2-3 kg)
e Background rejection

using ANN | Eur. Phys. J. C.
73, 2583 (2013)

&

* Small mass (< 1 kg)

PPC

|[EEE Trans. on
Nuc. Sci., 36, 1,
926-930 (1989)

* Excellent background rejection
with traditional methods

I

BeGe

Eur. Phys. J. C
79,978 (2019)

——

Inverted-Coaxial

NIMA ,891, 106-110, (2018)

Newly developed for LEGEND
Large mass (up to 4 kg)
Excellent background rejection
with traditional methods

Materials from the GERDA and MAJORANA Collaborations
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Background Rejection in Point Contact Detectors

OvBp signal candidate (single-site)
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Energy and Pulse Shape Parameter Calibration

10° y
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e Weekly Th-228 source deployments used for

energy scale calibration

e Also used for pulse shape discrimination

parameter calibration

— Double Escape Peak: single-site Ovp3p proxy

— Single Escape Peak: multi-site proxy
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Implications for Al/ML

e Granular Detectors + Low Backgrounds
— Low rate of physics events (< 1 Hz per detector)
— Noise-induced events can make up a large fraction of triggered waveforms

— Allows time-intensive analysis of final waveforms, but algorithms should also run on much
larger calibration data sets to confirm signal acceptance rate and stability

|)I

e “Traditional” pulse-shape parameters perform quite well for background rejection

— Build network structures that improve on existing pulse-shape parameters or leverage signal
physics knowledge

— Use Al/ML for tasks other than signal/background event classification

e Discovery could be claimed based on as few as 3 events
— Analysis interpretability is key
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Project Goals and Team

e Overall goal: improve scalability and capabilities of analysis
methods for the Majorana Demonstrator and LEGEND using
ML tools

Reduce detector-by-detector and run-by-run calibration steps
Enable near-real-time analysis of commissioning data

Develop methods to use more information from the waveform shape
to improve background modeling and rejection

e 5 projects within these goals:

Interpretable Boosted Decision Tree for MJD and LEGEND
Semi-autonomous Data Cleaning for LEGEND-200

Electronics Response Emulation and Removal for LEGEND
Self-supervised Learning for Waveform Classification in LEGEND

A O
DA \A \J C O JVV \A \J NJ \J \J \J

Create ML Validation and Training Data Set with Co-56

J. Gruszko, Pl A. Li, Former Postdoc E. Leon, PhD
(now UCSD faculty) Student

o

K. Bhimani, G. Duran, K. Kilgus, Visiting
PhD Student PhD Student PhD Student

Undergraduate researchers: H. Nachman,
A. Bahena Schott, N. Gray, N. O’briant

Group Demographics:
5/10 women

5/10 Hispanic or African Am.
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Germanium Machine Learning (GeM) Group

Leverage efficient and interpretable Al to aid all aspects of LEGEND analysis and simulation
Lay groundwork for constructing an independent Al analysis chain
Leverage resources to educate domestic and international collaborators to gain Al experience

* Completed Project [‘* E. Leon Autonomous Data Cleaning and Run Monitor ]
S . : .
F) Ongoing/Future Project Data Cleaning ¥ Dr. . Ol LBM Network PSA
° Data Quality
S Background [* Dr. A. Li, H. Nachman Interpretable BDT ]

2 Veto
Y Spectrum

e
# Dr. A. Li Develop LEGEND Baseline Model (LBM) Fitting ‘
‘ / 4 ':,f" A. Alexander LBM Dead Layer Fitting
-),'f\(— K. Kilgus, Dr. A. Li Enhance LBM with Feature Importance Supervision o /
\\ J / . ‘¢~ L. Paudel LBM Site Energy Reconstruction
Reconstruction
/ ° S # R. Pitelka LBM Position Reconstruction
® MC Tuning [-::J(:— Dr. A. Li Cyclic Positional U-Net ]
MC Simulation K Shimal
‘* N. Zareskii GAN Waveform Simulation H
elp LEGEND achieve low-ris
‘*’ Dr. A. Shuetz Neutron Moderator Design Emulation M p H M k'
%= Dr. ulati
i - high-impact discovery of 0uvBp

Slide by A. Li



ML-Assisted Simulations
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Electronics Emulation: Motivation

LEGEND 200 readout electronics (idealized)
10m in LAr and GAr

<& »
<« »

e Pulse-shape simulations based on detector |
response are quite advanced, but are not being —
used regularly for background modeling due to !

difficulties in modeling electronics chain response mﬂ | 5

e Fitting-based approach for MJD proved unfeasible:

— Requires highly-degenerate detector-dependent 12- -
. Suprasil C. C. TiAu traces
parameter fit board \___| /

— Instability in electronics causes changes over time, Pulser/,
requiring repeated fits input

* Emulating electronics would allow for:

* Improved modeling of PSD performance and systematics
* Improved L1000 detector and ASIC design
« Position reconstruction inside the detectors

* True electronics deconvolution would improve
performance of PSD
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Electronics Emulation: Goals

ADC Counts [a.u.]
ADC Counts [a.u.]

= —— Simulated Pulse —— CPU-Net Output

Time Sample [ns]

Time Sample [ns]

—

= —— Simulated Pulse —— CPU-Net Output

ADC Counts [a.u.]
ADC Counts [a.u.]

Time Sample [ns] Time Sample [ns]

e Goals: create a network structure that can learn both forward
(convolution) and backward (deconvolution) transforms to mimic
electronics response that can be trained using in-situ LEGEND data

 Two requirements:

« Preserve underlying topology and position information: multi-site vs. single-site,
surface effects, position in detector

« Reproduce key waveform features, initially tested by studying ensemble
distributions such as decay tail, baseline noise and current amplitude distribution

Simulated Pulses in
PPC Detector

T T T T T T T T T
0 100 200 300 400 500 600 700 800

Julieta Gruszko | ML for Ge OvBB | Al/ML Pl Echange 2023



Electronics Emulation: Network Design

e Cycle-GAN provides a solution for
how to train 1-to-1
correspondence without knowing
simulation/data pairs

e Forwards and backwards directions
trained simultaneously

e 1D U-Net chosen as initial
generator model, but more-
interpretable models will be tested
in the future

 Added positional encoding maps
inspired by Transformer model

e Discriminator is an RNN with an
attention mechanism (LEGEND
Baseline Model) that has been
demonstrated in a variety of
waveform discrimination tasks
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Electronics Emulation: Network Design

e Cycle-GAN provides a solution for
how to train 1-to-1
correspondence without knowing
simulation/data pairs

e Forwards and backwards directions
trained simultaneously

e 1D U-Net chosen as initial
generator model, but more-
interpretable models will be tested
in the future

 Added positional encoding maps
inspired by Transformer model

e Discriminator is an RNN with an
attention mechanism (LEGEND
Baseline Model) that has been
demonstrated in a variety of
waveform discrimination tasks
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Electronics Emulation: Training

* Proof of concept based on Th-228 calibrations of a BEGe detector at UNC

» Detector hits generated in Geant4 simulation; waveforms simulated with Siggen

* Training consist of updating weights of two generators and two discriminators using data and simulated pulses
e Trained on 90k Full energy peak events (FEP): combination of single- and multi-site

* Validated on 27k single escape peak events (SEP): primarily multi-site

Data Energy spectrum

W 10° 5

104 4

103 E

102 E

_ B wmaE. ,
. 500 1000 1500 2000 2500
Germanium detector and outer copper cryostat Energy (keV)
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Electronics Emu

ation: Training Results on FEP
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By eye, results
are looking
good!
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Electronics Emulation: Results

 The model learns to translate the flat tail of simulations into an exponential decay
. . _ Technical paper published as part of the
o Distribution of waveforms amplitude slows to move towards the data (low-pass filter effect) NeurlPS 2022 Workshop on Machine Learning

« Mismatch in current amplitude distributions seems to be an issue with the simulation in the Physical Sciences: “Ad-hoc Pulse Shape

geometry and settings: simulation is over-predicting multi-site population in low-current peak | Simulation using Cyclic Positional U-Net”;
received MLST Best Paper Award

* Next steps: switch to using LEGEND characterization data, with lower backgrounds and better- | https://ml4physicalsciences.github.io/2022/

measured geometry; test behavior with pre-applied basic single-component decay

SEP events on FEP trained data SEP events on FEP trained data
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J_ === Data 16001 Data
4000 J__ === Simulation 1400. Simulation
=== Network-Translated Lo00] N.etwork—TransIated
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3000 - $ 1000
2 - >
o ] w
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52000 +
* — | | 600
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—L'—l__ 2001 ’]JJ L
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Electronics Emulation: Method Validation Studies

e Two validation studies underway by undergraduates:

— Pure Simulation Method: model basic electronics chain in
LTSpice, apply to simulated waveform dataset; test if network
is able to reproduce behavior correctly

— Dummy Detector Method: build dummy detector and readout
circuit, measure response using network analyzer; use
waveform generator to create dataset and test if network is
able to reproduce behavior correctly

e Future validation study (2023 renewal): test using position-
labeled ICPC data from novel Compton scanner

rﬂl £[> Oscilloscope
Td

Waveform
generator

EPJC 82, 936 (2022)

/
~—

]

B

B —

"]
Position & energy
sensitive camera
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ML-Enhanced Analysis Tools

LSTM Network Attention Mechanism
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Semi-Autonomous Data Cleaning: Motivation

Advantages over traditional data
cleaning:

e Adapts to changing run
conditions

e Allows ID of new populations
during commissioning

e Flexible framework can be used
for detector characterization
measurements in addition to
LEGEND-200

e Could improve separability by
using more waveform information

Group and label

Extract pulse shape similar waveforms
information from > using an
waveforms unsupervised

learning classifier

Extend classifier

results to larger Analyze output and
datasets using a - assess physics event
supervised learning sacrifice
model

Unsupervised learning = no labels prior to training
Supervised learning = labels available prior to training
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Semi-Autonomous Data Cleaning: Network Design

Extract relevant pulse shape
information using wavelet
decomposition, normalize
waveforms

Use unsupervised Affinity
Propagation to cluster training set
waveforms and produce exemplars

User studies exemplars and
provides labels, used to train
Support Vector Machine (SVM)
that draws boundaries between
categories

All other data is labeled using SVM

000000

000000

000000

M

SVM 3D visualizations
developed by A.
Bahena Schott

000000
OOOOOO
e SlowRise
ooooo
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Comparison to Traditional Data Cleaning Cuts

*Traditional data cleaning cuts defined for > 25 keV events -> compare using a
dataset of physics data with a 25 keV threshold

104_' Before cuts (n = 504,674)
After ML cut (n = 275,105)
1 After traditional cuts (n = 265,130)
103 5
" 1
E ]
o 1021
O f
104
1 | Wmmlllﬂlm LN |
0 1000 2000 3000 4000

Energy [keV]
AP-SVM Cut: Keep only events tagged as Normal (0) or Slow Rise (6)
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Sample Waveform Confusion Matrix
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Semi-Autonomous Data Cleaning: Sacrifice Study

Events Kept:

10° 4 Before cuts (n = 1,173,237)
— ML accepted (n=1,173,159)
104 [ 1ML rejected (n = 78)
15800
15600 123 1 ()3 .
15400 S
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0 \ e Salting with pre-selected calibration events used to check

0.0012

- A survival efficiency: € = 99.9934¥0-0012%
15100

e ML-based data cleaning in use across the LEGEND Collaboration:
— Rapid data cleaning for characterization stands
ool S — Used to aid development and testing of traditional data cleaning

0 20000 40000 60000 80000 100000 120000

150001
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Semi-Autonomous Data Cleaning: An Experiment-Agnostic Model

MJD Prototype ~ Fyll Chain Test
Cryostat f —

R -l

Publication in
preparation

[
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LBM with Feature Importance Supervision: Motivation

e LEGEND Baseline Model (LBM) goal: make an interpretable multi-purpose
model for waveform analysis and classification tasks

=
©

o
N

ADC counts [arb. units]

o
o

e Feature Importance Supervision: allow user to add physics knowledge to LBM

— Additional loss functions tell network what information should be useful in
task, encourages network to ignore irrelevant information

o
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We know that...

Position reconstruction — rising edge

Surface event ID > and

Multi-site ID = rising edge and

Project conducted by

Kilgus from University
of Tubingen,
supported by award
from Reinhard Frank-
Stiftung Foundation

visiting PhD student K.
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LEGEND Baseline Model: Network Design

e LEGEND Baseline Model: RNN used to process waveform data, with attention mechanism
allowing network to “zoom in” on relevant information for the specific task

e Attention scores allow interpretability of results

e A danger of the LBM: waveforms are normalized, but baseline noise contains energy
information. Training with signal-like and background-like peaks in spectrum can lead to bias

LSTM Network Attention Mechanism

—* Customized Score Function S(E, m’)
w w

fw I I I I I I
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- Spectrum Fitting
A. Alexander
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LBM with Feature Importance Supervision: Network Design

FIS forces model to Given the full
task input, the

model returns
given only important = anaccurate

be accurate when

features, and e
appropriately
uncertain/invariant

given only

unimportant ones

First test: multi-site

event rejection and

energy dependence

Method adapted from Z. Ying, P. Hase, and M.
Bansal, NeurlPS 2022, arXiv:2206.11212

Subset containing
the important
features is
sufficient to

produce accurate
output.

All Features
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Accurate Output
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» Add all together

Subset
containing only
unimportant
features
produces
uncertain result

Unimportant

00 150 200 250

Uncertain Output

Uncertain Loss

Adding
unimportant
information
does not
change
result

Important +
Unimportant

100 150 200 250

Same Output
as Important Features

Invariant Loss

Model
feature
importance
matches
human
explanation

Human Feature
Importance

100 150 200 250

Model
Importance

Alignment Loss
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LBM with Feature Importance Supervision: Results

Th-228 Spectrum

10° 4

10% -

103 -

102 -

0 500 1000 1500 2000 2500 3000
energy in keV

e DEP and SEP: test multi-site rejection

— RNN + FIS outperforms traditional method and
CNN + FIS method

e Compton continuum: test energy bias of classifier
— Networks with FIS eliminate bias of LGB

Multi-Site Rejection

1.0
0.8
3
o 0.6
=
& 044 )
3 —— AoE AUC: 0.826
2 —— RNN wo FIS AUC: 0.913
02 —— CNN + FIS AUC: 0.715
0.0 —— RNN + FIS AUC: 0.833
0.0 0.2 0.4 0.6 0.8 1.0
true positive rate
Energy Dependence
1.0
0.8
o
0 0.6
2
a
o 0.4-
& —— AOE AUC: 0.474
0.2 1 —— RNN wo FIS AUC: 0.728
—— CNN + FIS AUC: 0.483
0.0- —— RNN + FIS AUC: 0.526

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate
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LBM with Feature Importance Supervision: Results

Counts

L200 Detector Characterization Data

Energy (MeV)

ﬁ

Ma ".m ‘
i |

3000

mm= NO CUTLS
men A\ /E CUL
| BV
memm= CNN + FIS
m—= | BM + FIS

" \u,l

||| |

350 0

A/E

LBM
CNN + FIS
LBM + FIS

90%
(fixed)

90%
90%
90%

Single
Escape
Peak

(Bkg-Like)

7%

5%
36%
6%

Continuum
at QBB
(Mixed)

29%

33%
60%
33%

Calibration spectrum after cuts shows that energy-dependent behavior of LGB is corrected and
that LGB+FIS performs similarly to traditional method

Next steps: testing models with varying attention targets, varying applications

Also underway: PSD tools for LEGEND coaxial detectors based on LGB+FIS
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Other Projects

e Self-supervised learning on waveforms:
— Tool has been developed and is available; for the moment, used primarily for data exploration
e Boosted Decision Tree analysis method and interpretability study:
— Published analysis on full MAJORANA DEMONSTRATOR dataset OvBp search: PRL 107, 014321 (2023)
— H. Nachman’s senior thesis was a study of applying this method to LEGEND-200 rapid detector
characterization; method is ready for final L-200 detector characterization campaign in Spring 2024
* MAJORANA DEMONSTRATOR data release:

— Tagged single-site and multi-site calibration waveform data released for Al/ML tool development,
information available on arXiv: https://arxiv.org/abs/2308.10856

e Co-56 training/validation data set: T
— LBM-FIS study shows that energy bias from limited 9 e s S
training samples using Th-228 peaks can be sem ;::;35{5::::;3;;6 oz a0 s bam ——-auas
significant, so we're prioritizing rapid deployment of #
Co-56 in LEGEND-200 and UNC LAr test stand i MR
— PhD student G. Duran is conducting simulation studies 125
of needed source strength in UNC LAr test stand,

source deployment expected in January 2024 Pair-Production Decays of Co-56
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https://arxiv.org/abs/2308.10856

' Deliverables and Schedule

Year 2022 2023 2024
Quarter Q1 Q2 Q3 Q4 Ql Q2 Q3 Q4 Ql

11/30/21 - 10/1/23 -
Dates 1/1/22 1/1/22-4/1/22 4/1/22 -7/1/22 7/1/22-10/1/22 10/1/22-1/1/23 1/1/23-4/1/23 4/1/23-7/1/23 7/1/23-10/1/23 11/30/23

Task 1a: BDT for MJD ---

Task 1b: BDT for LEGEND -----
Task 2: Data Cleaning paper

Publish LEGEND-

200 background

Publish physics Implement for Provide model,
paper using test analysis and pulse recommendationsincorporating
Task 3: Electronics Emulation data shape simulations for LEGEND-1000 emulation

Integrate data-

driven and

Begin tests of SSL simulations-based

Task 5: Semi-/Self-Supervised on pulse shape networks.
Learning simulations

Personnel

Aobo Li

Henry Nachman,
Aobo Li

Esteban Leon

Aobo Li, Kevin
Bhimani, Julieta
Gruszko

Esteban Leon,
Aobo Li, Julieta
Gruszko
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Budget

lllllllllllEﬂﬂﬂﬂllllllEﬂﬁﬂﬂllllllﬁﬂﬂﬂﬂllllll

Funds allocated
Actual costs to date 215 211 13
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LEGEND Collaboration

Mission: The collaboration aims to develop a phased, Ge-76 based double-beta decay
experimental program with discovery potential at a half-life beyond 1028 years, using existing
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Pulse Shape Analysis with Recurrent Neural Networks (L. Paudel): A Preview

e Using the full MAJORANA
DEMONSTRATOR dataset, search for

isomeric gamma transitions to study ... [

rare cosmogenic decays; use ML to
extract decay energies and timing

e Also study whether traditional
multi-site rejection can be improved
with ML

e RNN used to process waveform
data, with attention mechanism
allowing network to “zoom in” on
relevant information for the specific
task

e Showing good results in both
classification and pile-up parameter
extraction

A 4s6h 80.3 d

3Ga 3As

66.74

32

— 499 ms <

El

3= E2
73Ge

Wednesday, 9:45 AM
L. Paudel

D12.00004 : Pulse-
Shape-Based Analysis
with Recurrent Neural
Networks in the
MAJORANA
DEMONSTRATOR

I()'zg

5000 10000 15000

time (ns_)

.........................................
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

predicted (I“..I;‘,_) — true (/v_'[ I ,"_‘)
Network is able to correctly extract
energy ratio of pile-up pulses
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L1000 Design Optimization (A. Schuetz): A Preview

e L1000 has a potential cosmogenic background
from neutron activation of °Ge

'/’
(
e Simulations of this background are complex and I
. . . t
make it computationally expensive to study 2::{,?2

. . . 76
potential neutron moderator configurations onGe

e |nstead, train emulator using a combination of fast
low-fidelity simulations with slow high-fidelity
simulations, using active learning

Linear Multi-Fidelity Model Fit

0.26

Friday, 9:15 AM

A. Schuetz

L08.00002 : Machine
learning based design
optimization for the search

of neutrinoless double-beta
decay with LEGEND

0.24

0.22
0.20
0.18
0.16
0.14
. LS S TSR TS e Sty
~~~~~ C Q o o "6 - &
— e R Rt L T 0.12

pe TS 0y Santrep |
e ."\\ 0.10

0 . '
. --.‘: ..o S b:ﬂ\\\.:. ,,,,,,,

77(m)Ge Production Rate

Radius (cm)
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L1000 Design Optimization: Motivation

e L1000 has a potential

cosmogenic background from

neutron activation of 76Ge

76Ge = = I

-

neutron
capture

- [}
<--—-- =3

4______

(50+£10)%

oooooooooooooooooooo

54s

(50£10)% 1
cosmogenic production |

77Ge 7/2* v

\ ~1
A\ N
A\ 160 keV
\y {9:2)%
1 \
1

= 11 h

-

Collaboration with
Machine-learning
Optimized Design
of Experiments

\

A}
\'\ Qp = 2.7 MeV
v\
\a
\‘ \
\

- 114 us

211 keV
(30£1)%

265 keV

39h

(MODE Collaboration)

Liquid
ooooooooo Argon

PMMA
moderator
pani

e Moderating neutrons increases
probability of neutron capture in Ar
active shield instead of Ge

What is the optimal design for the
neutron moderator panels?

Simulations are computationally expensive,
with many free parameters

Instead, train an emulator to choose which
combinations to simulate

Ie

|
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L1000 Design Optimization: Network Design

[ Initial sampling

[ Model simulation

and improve the
parameter points

Construct surrogate learning
model Iterate to update
surrogate model
[ Generate new J |
l End
Return the best
parameter

Select evaluation criterion

Search the best parameter
point with global optimization

Design 1: [Mod. Thickness, ..

Design 2: [Mod. Thickness, ..

Bayesian Model with Multi-Fidelity

.] = Emulator - 7/Ge Reduction efficiency

.] = Emulator = 7/Ge Reduction efficiency

e Combine fast low-
fidelity simulations with
slow high-fidelity
simulations

- Low Fidelity

—— High Fidelity

=== Predicted Low Fidelity
Predicted High Fidelity

10

£ area of high uncertainty

e.g. include additional high fidelity point here

simulation with 25k primary
neutrons (~ 0.08 CPUh)

simulation with 107 primary

muons (cosmic muon showers)
(~200 CPUN)

—
—

e (Gaussian process used
for surrogate model

00 02 04 06 08 10
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L1000 Design Optimization: Active Learning

77Ge Production Rate

hnear multi-fidelity model fit to low and high fidelty functions

LF Surrogate Model
® LF Simulation Data
=== HF Surrogate Model
e HF Simulation Data

knear multi-fidelity model fit to low and hagh fidelty functions

1rd New sample

LF Surrogate Model

® LF Simulation Data
=== Updated HF Surrogate Model

e HF Simulation Data
» New HF sample

Repeat until
stopping criteria
is met

= Gradient-based

/‘ optimizer over
acquisition

2nd New sample

function used

Acquisition
function

104

Updated
acquisition
function

to find the next
point to
simulate

140

0

H
pase

run new HF simulation with r=240cm

150 200

run new HF simulation with r=161cm

Results coming soon...

Julieta Gruszko | ML for Ge OvBB | Al/ML Pl Echange 2023



Interpretable BDT: Motivation

Due to charge trapping and charge cloud diffusion in the 7
detector bulk, traditional analysis parameters are often highly 104 |
correlated: standard analysis fits the largest linear bi-variate . | |
correlations detector-by-detector and corrects for them | Y |
0 . ‘ ) |
40
BDT method developed to... Slope: '°-°8°25>
e Utilize all the correlations to improve background ol Non-linear =}
reduction Dependency: |
Event near -
e Reduce the need for additional targeted cuts like LQ 20 poinlfgonta@’ E
cut - 1000~
e Develop method for future experiments and rapid SR
Characterization g 10 4 . .9500 10000 10500 11000 11500 12000 1250013000’}22151(:22:(5)())0 E
— Reduce need for detector-by-detector calibration
— Reduce need for run-by-run calibration ° - iy [
— Address increased correlations in larger-mass Linear Dependency: Avst Corr. :
detectors ] . - F
e Leverage interpretability to learn from the machine B |
=20
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Interpretable BDT: Network Design

[ ISENRICHED y DETECTOR y DRIFT TIME y AVSE y DCR

e Boosted Decision Tree using traditional pulse shape analysis parameters, implemented in

LightGBM
* Two networks, using different training data sets:

— MSBDT tags multi-site events, trained with 22°Th calibration data

— aBDT tags surface events, trained with background events from OvBf runs; uses SMOTE-MC to

augment data and create larger sample of training events

DS

]

. . . . High 20
e Distribution matching performed e Bttt — Linear i
. channel ce 5";\:" ———s.6 15
for “non-primary” features . - s v
ds R g 2
e Shapley value used to interpret o “’3" s E 5
. , _ - . o
network results and improve - * s
tradltlonal analySIS SHAP_vzaIue (impoacton mofjel outputl)1 o oo Drg’?gimes[?g] 1000 1200
(a) (b)
) S

s

| | o L
N =

SHAP Value of tDrift

|
w
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Interpretable BDT: Results

MSBDT

aBDT:

S 2
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Interpretable BDT: Results

PRL 107,
014321
(2023)

10%

i)

‘HHHHH L1 T

|

[ 1 Raw Spectrum
BDT Analysis
1 Standard Analysis

Background Window

l

1000

2000

3000
Energy [keV]

4000

5000

e Difference driven by late addition of new analysis parameter, which was not included in BDT

e Comparable result with far fewer person-hours! No detector-by-detector or run-by-run secondary calibration

needed.

e |Interpretability study shows that BDT has “discovered” known correlations between parameters

e Feeds back to improve traditional analysis: choose between similar parameters based on importance and
implement new PSD based where BDT-outperforms

 Now being applied to LEGEND characterization data and exploring the use of lower-level parameters
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