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Outline

• Neutrinoless Double-Beta Decay in 76Ge
• ML-Assisted Simulations

– Electronics Emulation and Validation (K. Bhimani, N. 
Gray, N. O’briant)

• ML-Enhanced Analysis Tools
– Semi-Autonomous Data Cleaning (E. Leon, A. Bahena

Schott)
– LEGEND Baseline Model with Feature Importance 

Supervision (A. Li, K. Kilgus)
– Other projects:

• Self-supervised learning (A. Li)
• Interpretable BDT for LEGEND Characterization (H. Nachman)
• MAJORANA DEMONSTRATOR Data Release (A. Li)
• Creating a Co-56 Training Data Set (G. Duran)
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From Beta Decay to Double Beta Decay
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Beta Decay: Double Beta Decay:
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From 2νββ to 0νββ

n

n

!𝜈!
n

e-

p

p

e-

!𝜈!

2n → 2p + 2e- + 2 !𝜈!

Double Beta Decay:

Standard Model 
Physics
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2n → 2p + 2e-

Neutrinoless Double Beta Decay:

New Physics!
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Why Neutrinoless Double Beta Decay?
• The discovery of 0νββ decay would dramatically revise our 

foundational understanding of physics and the cosmos
– Lepton number is not conserved
– The neutrino is a fundamental Majorana particle

Milano
St. Gotthard

GERDA

UCSB/LBL

MAJORANA

Heidelberg-
   Moscow

ITEP,
 IePY
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LEGEND-1000 goal

LEGEND-200 goal

KKDC
 Claim

Year

• The search for 0νββ decay is one of the 
most compelling and exciting challenges 
in all of contemporary physics

• 76Ge-based searches have proven very 
successful in searching for this ultra-rare 
process

– There is a potential path for understanding the matter - antimatter 
asymmetry in the cosmos, through leptogenesis

– There is a new mechanism demonstrated for the 
generation of mass
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The 0νββ Signal

e-

W- νe

e-W-

A, Z A, Z+2

νe
2νββ: Standard 
Model process Missing 

energy

0νββ: Only if ν is 
Majorana

e-

W- νM
e-

W-

A, Z A, Z+2

No missing 
energy Event topology:

• βs don’t travel far in HPGe
• ββ decays are “single-site” events
• γ backgrounds are often “multi-site”
• α and β backgrounds concentrated on 

detector surfaces
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Designing for Unambiguous Discovery
• What is required for a discovery of 0νββ 

decay?

• Long half-lives mean you need large 
exposures. For 3-4 counts of 0νββ at…

– 1026 years: 100 kg-years 

– 1027 years: 1 ton-year

– 1028 years: 10 ton-years

• Need a good signal-to-background 
ratio to get statistical significance

• A very low background event rate

• The best possible energy resolution

Energy (keV)

Simulated LEGEND-1000 example spectrum for T1/2 = 1028 yrs, 
BI < 10-5 cts/keV kg yr, after cuts, from 10 years of data

0νββ
T1/2 = 1028 yr
3-4 events

Flat, featureless 
background
No background peaks 
expected near Qββ

2νββ

< 10-6 2νββ events 
leak into in Qββ±2σ

≈0.1% FWHM 
energy resolution

At every stage, 0νββ searches in 76Ge are designed for unambiguous discovery: 
their goal is quasi-background free operation for their full exposure
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GERDA Final 0νββ results: 𝑇!/#
$%&& > 1.8	×10#'𝑦𝑟𝑠

MJD Final 0νββ results: 𝑇!/#
$%&& > 8.3	×10#(𝑦𝑟𝑠

LEGEND-200: Taking data
LEGEND-1000: Conceptual design 
development continuing
 

From the Current Generation to the Ton Scale 

arXiv: 2107.11462

PRL 125, 252502 (2020)

PRL 130, 062501 (2023)
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Germanium Detector Innovation

(Semi)-Coaxial
• Large mass (2-3 kg)
• Background rejection 

using ANN

BeGe

PPC

• Small mass (< 1 kg)
• Excellent background rejection 

with traditional methods Inverted-Coaxial

• Newly developed for LEGEND
• Large mass (up to 4 kg)
• Excellent background rejection 

with traditional methods

NIMA ,891, 106-110,  (2018)

IEEE Trans. on 
Nuc. Sci., 36, 1, 
926-930 (1989)

Eur. Phys. J. C 
79, 978 (2019)

Materials from the GERDA and MAJORANA Collaborations

Eur. Phys. J. C. 
73, 2583 (2013) 
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Background Rejection in Point Contact Detectors
0νββ signal candidate (single-site) γ-background (multi-site)

Acceptance Window

Weighting Potential and Charge Drift

reje
cte

d

Weighting Potential and Charge Drift

Acceptance Window
Charge 
signal

Current 
signal

accepted

Surface background on n+ contact Surface background on p+ contact 

Acceptance Window

Weighting Potential and Charge DriftAcceptance Window

Weighting Potential and Charge Drift

reje
cte

d
reje

cte
d

Current 
signal

Charge 
signal

External α, β, and 
γ backgrounds all 
create distinctive 
pulse shapes, 
allowing for highly 
efficient ββ decay 
event selection

Charge 
signal

Current 
signal

Current 
signal

Charge 
signal



11

Ju
lie

ta
 G

ru
sz

ko
| M

L 
fo

r G
e 

0ν
ββ

|  
AI

/M
L 

PI
 E

ch
an

ge
20

23

Energy and Pulse Shape Parameter Calibration

• Weekly Th-228 source deployments used for 
energy scale calibration

• Also used for pulse shape discrimination 
parameter calibration
– Double Escape Peak: single-site 0νββ proxy
– Single Escape Peak: multi-site proxy

DEP: Single-Site

reje
cte

d

Charge 
signal

Current 
signal

SEP: Multi-Site
Acceptance Window

Charge 
signal

Current 
signal

accepted

Acceptance Window
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Implications for AI/ML
• Granular Detectors + Low Backgrounds 

→ Low rate of physics events (< 1 Hz per detector)
→ Noise-induced events can make up a large fraction of triggered waveforms
→ Allows time-intensive analysis of final waveforms, but algorithms should also run on much 
larger calibration data sets to confirm signal acceptance rate and stability

• “Traditional” pulse-shape parameters perform quite well for background rejection
→ Build network structures that improve on existing pulse-shape parameters or leverage signal 
physics knowledge
→ Use AI/ML for tasks other than signal/background event classification

• Discovery could be claimed based on as few as 3 events
→ Analysis interpretability is key
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Project Goals and Team
• Overall goal: improve scalability and capabilities of analysis 

methods for the Majorana Demonstrator and LEGEND using 
ML tools
– Reduce detector-by-detector and run-by-run calibration steps
– Enable near-real-time analysis of commissioning data
– Develop methods to use more information from the waveform shape 

to improve background modeling and rejection

• 5 projects within these goals:
– Interpretable Boosted Decision Tree for MJD and LEGEND
– Semi-autonomous Data Cleaning for LEGEND-200
– Electronics Response Emulation and Removal for LEGEND
– Self-supervised Learning for Waveform Classification in LEGEND
– Build Local High-Powered Computer for Algorithm Prototyping
– Create ML Validation and Training Data Set with Co-56

J. Gruszko, PI A. Li, Former Postdoc 
(now UCSD faculty)

E. Leon, PhD 
Student

K. Bhimani, 
PhD Student

K. Kilgus, Visiting 
PhD Student

Undergraduate researchers: H. Nachman, 
A. Bahena Schott, N. Gray, N. O’briant

G. Duran, 
PhD Student

Group Demographics:

5/10 women

5/10 Hispanic or African Am.



Slide by A. Li

K. Bhimani



ML-Assisted Simulations 
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Electronics Emulation: Motivation
• Pulse-shape simulations based on detector 

response are quite advanced, but are not being 
used regularly for background modeling due to 
difficulties in modeling electronics chain response

• Fitting-based approach for MJD proved unfeasible:
– Requires highly-degenerate detector-dependent 12-

parameter fit
– Instability in electronics causes changes over time, 

requiring repeated fits

• Emulating electronics would allow for:
• Improved modeling of PSD performance and systematics
• Improved L1000 detector and ASIC design
• Position reconstruction inside the detectors

• True electronics deconvolution would improve 
performance of PSD 

LEGEND 200 readout electronics (idealized)

Pulser 
input

10m in LAr and GAr
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Electronics Emulation: Goals

• Goals: create a network structure that can learn both forward 
(convolution) and backward (deconvolution) transforms to mimic 
electronics response that can be trained using in-situ LEGEND data

• Two requirements:
• Preserve underlying topology and position information: multi-site vs. single-site, 

surface effects, position in detector
• Reproduce key waveform features, initially tested by studying ensemble 

distributions such as decay tail, baseline noise and current amplitude distribution

Simulated Pulses in 
PPC Detector
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Electronics Emulation: Network Design
• Cycle-GAN provides a solution for 

how to train 1-to-1 
correspondence without knowing 
simulation/data pairs

• Forwards and backwards directions 
trained simultaneously

• 1D U-Net chosen as initial 
generator model, but more-
interpretable models will be tested 
in the future

• Added positional encoding maps 
inspired by Transformer model

• Discriminator is an RNN with an 
attention mechanism (LEGEND 
Baseline Model) that has been 
demonstrated in a variety of 
waveform discrimination tasks

With electronics response

W/o electronics response

Discriminator A: 
membership

Inverse 
Translated
Simulation 

Ge
ne

ra
to

r B

W/o electronics response

Data from 
Ge detector

Generator A
With electronics response

Translated 
Simulations Simulations

Discriminator B: 
one-to-one match
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Electronics Emulation: Network Design

With electronics response

W/o electronics response

Discriminator A: 
one-to-one match

Translated 
Data

Generator B

W/o electronics response

Data from 
Ge detector

Ge
ne

ra
to

r A

With electronics response

Inverse 
Translated 

Data
Simulations

Discriminator B: 
membership

• Cycle-GAN provides a solution for 
how to train 1-to-1 
correspondence without knowing 
simulation/data pairs

• Forwards and backwards directions 
trained simultaneously

• 1D U-Net chosen as initial 
generator model, but more-
interpretable models will be tested 
in the future

• Added positional encoding maps 
inspired by Transformer model

• Discriminator is an RNN with an 
attention mechanism (LEGEND 
Baseline Model) that has been 
demonstrated in a variety of 
waveform discrimination tasks
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Electronics Emulation: Training
• Proof of concept based on Th-228 calibrations of a BEGe detector at UNC
• Detector hits generated in Geant4 simulation; waveforms simulated with Siggen

• Training consist of updating weights of two generators and two discriminators using data and simulated pulses

• Trained on 90k Full energy peak events (FEP): combination of single- and multi-site
• Validated on 27k single escape peak events (SEP): primarily multi-site

Th-228 source

SEP

FEP

Germanium detector and outer copper cryostat

Data Energy spectrum
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Electronics Emulation: Training Results on FEP

Simulated 
pulses Translated 

Pulse

Detector 
Pulses

Inverse 
Translated 
pulses

By eye, results 
are looking 
good!
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Electronics Emulation: Results
• The model learns to translate the flat tail of simulations into an exponential decay

• Distribution of waveforms amplitude slows to move towards the data (low-pass filter effect)

• Mismatch in current amplitude distributions seems to be an issue with the simulation 
geometry and settings: simulation is over-predicting multi-site population in low-current peak

• Next steps: switch to using LEGEND characterization data, with lower backgrounds and better-
measured geometry; test behavior with pre-applied basic single-component decay

Data

Simulation

Network-Translated 
Sim

Data

Simulation

Network-Translated 
Sim

Technical paper published as part of the 
NeurIPS 2022 Workshop on Machine Learning 
in the Physical Sciences: “Ad-hoc Pulse Shape 
Simulation using Cyclic Positional U-Net”; 
received MLST Best Paper Award 
https://ml4physicalsciences.github.io/2022/

https://ml4physicalsciences.github.io/2022/
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Electronics Emulation: Method Validation Studies
• Two validation studies underway by undergraduates:

– Pure Simulation Method: model basic electronics chain in 
LTSpice, apply to simulated waveform dataset; test if network 
is able to reproduce behavior correctly

– Dummy Detector Method: build dummy detector and readout 
circuit, measure response using network analyzer; use 
waveform generator to create dataset and test if network is 
able to reproduce behavior correctly

• Future validation study (2023 renewal): test using position-
labeled ICPC data from novel Compton scanner 

Waveform 
generator

Oscilloscope

EPJC 82, 936 (2022) 

Position & energy 
sensitive camera



ML-Enhanced Analysis Tools
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Semi-Autonomous Data Cleaning: Motivation

Advantages over traditional data 
cleaning:
• Adapts to changing run 

conditions
• Allows ID of new populations 

during commissioning
• Flexible framework can be used 

for detector characterization 
measurements in addition to 
LEGEND-200

• Could improve separability by 
using more waveform information
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Semi-Autonomous Data Cleaning: Network Design
• Extract relevant pulse shape 

information using wavelet 
decomposition, normalize 
waveforms

• Use unsupervised Affinity 
Propagation to cluster training set 
waveforms and produce exemplars

• User studies exemplars and 
provides labels, used to train 
Support Vector Machine (SVM) 
that draws boundaries between 
categories

• All other data is labeled using SVM

…

SVM 3D visualizations 
developed by A. 
Bahena Schott
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Comparison to Traditional Data Cleaning Cuts
*Traditional data cleaning cuts defined for > 25 keV events -> compare using a 

dataset of physics data with a 25 keV threshold

AP-SVM Cut: Keep only events tagged as Normal (0) or Slow Rise (6)
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Sample Waveform Confusion Matrix
A

P-
SV

M
 

Re
m

ov
ed

A
P-

SV
M

 
Ke

pt
Traditional Kept Traditional Removed
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Semi-Autonomous Data Cleaning: Sacrifice Study

• Salting with pre-selected calibration events used to check 
survival efficiency:	𝜖 = 99.9934#$.$$&'($.$$&)% 

• ML-based data cleaning in use across the LEGEND Collaboration:
– Rapid data cleaning for characterization stands
– Used to aid development and testing of traditional data cleaning

Events Removed:

Events Kept:
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Semi-Autonomous Data Cleaning: An Experiment-Agnostic Model

AP-SVM

Post GERDA TestLEGEND-60LEGEND-200Full Chain TestMJD Prototype 
Cryostat

ORNL 
Characterization

HADES 
Characterization

Experiments with Time-Series Data

Publication in 
preparation
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LBM with Feature Importance Supervision: Motivation
• LEGEND Baseline Model (LBM) goal: make an interpretable multi-purpose 

model for waveform analysis and classification tasks

Position reconstruction → rising edge

Surface event ID → turning corner and 
waveform tail

Multi-site ID → rising edge and turning 
corner

We know that…

• Feature Importance Supervision: allow user to add physics knowledge to LBM
– Additional loss functions tell network what information should be useful in 

task, encourages network to ignore irrelevant information

Project conducted by 
visiting PhD student K. 
Kilgus from University 
of Tübingen, 
supported by award 
from Reinhard Frank-
Stiftung Foundation
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LEGEND Baseline Model: Network Design
• LEGEND Baseline Model: RNN used to process waveform data, with attention mechanism 

allowing network to “zoom in” on relevant information for the specific task
• Attention scores allow interpretability of results
• A danger of the LBM: waveforms are normalized, but baseline noise contains energy 

information. Training with signal-like and background-like peaks in spectrum can lead to bias
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LBM with Feature Importance Supervision: Network Design
• FIS forces model to 

be accurate when 
given only important 
features, and 
appropriately 
uncertain/invariant 
given only 
unimportant ones

• First test: multi-site 
event rejection and 
energy dependence

Given the full 
task input, the 
model returns 
an accurate 
output. 

Subset containing 
the important 
features is 
sufficient to 
produce accurate 
output.

Subset 
containing only 
unimportant 
features 
produces 
uncertain result

Adding 
unimportant 
information 
does not 
change 
result

Model 
feature 
importance 
matches 
human 
explanation

Method adapted from Z. Ying, P. Hase, and M. 
Bansal, NeurIPS 2022, arXiv:2206.11212 
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LBM with Feature Importance Supervision: Results

• DEP and SEP: test multi-site rejection
– RNN + FIS outperforms traditional method and 

CNN + FIS method

• Compton continuum: test energy bias of classifier
– Networks with FIS eliminate bias of LGB

Multi-Site Rejection

Energy Dependence
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LBM with Feature Importance Supervision: Results

• Calibration spectrum after cuts shows that energy-dependent behavior of LGB is corrected and 
that LGB+FIS performs similarly to traditional method

• Next steps: testing models with varying attention targets, varying applications
• Also underway: PSD tools for LEGEND coaxial detectors based on LGB+FIS 

Double 
Escape 
Peak
(Signal-
Like)

Single 
Escape 
Peak
(Bkg-Like)

Continuum 
at Qββ

(Mixed)

A/E 90% 
(fixed)

7% 29%

LBM 90% 5% 33%

CNN + FIS 90% 36% 60%

LBM + FIS 90% 6% 33%

L200 Detector Characterization Data

Co
un

ts

Energy (MeV)

No cuts
A/E cut
LBM
CNN + FIS
LBM + FIS
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Other Projects
• Self-supervised learning on waveforms:

– Tool has been developed and is available; for the moment, used primarily for data exploration

• Boosted Decision Tree analysis method and interpretability study:
– Published analysis on full MAJORANA DEMONSTRATOR dataset 0νββ search: PRL 107, 014321 (2023)
– H. Nachman’s senior thesis was a study of applying this method to LEGEND-200 rapid detector 

characterization; method is ready for final L-200 detector characterization campaign in Spring 2024

• MAJORANA DEMONSTRATOR data release:
– Tagged single-site and multi-site calibration waveform data released for AI/ML tool development, 

information available on arXiv: https://arxiv.org/abs/2308.10856

• Co-56 training/validation data set:
– LBM-FIS study shows that energy bias from limited 

training samples using Th-228 peaks can be 
significant, so we’re prioritizing rapid deployment of 
Co-56 in LEGEND-200 and UNC LAr test stand

– PhD student G. Duran is conducting simulation studies 
of needed source strength in UNC LAr test stand, 
source deployment expected in January 2024 Pair-Production Decays of Co-56

https://arxiv.org/abs/2308.10856


37

Ju
lie

ta
 G

ru
sz

ko
| M

L 
fo

r G
e 

0ν
ββ

|  
AI

/M
L 

PI
 E

ch
an

ge
20

23

Deliverables and Schedule

Year 2022 2023 2024 Personnel
Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

Dates
11/30/21 -
1/1/22 1/1/22-4/1/22 4/1/22 - 7/1/22 7/1/22 - 10/1/22 10/1/22 - 1/1/23 1/1/23 - 4/1/23 4/1/23 - 7/1/23 7/1/23 - 10/1/23

10/1/23 -
11/30/23

Task 1a: BDT for MJD
Complete BDT 

framework 

Write internal 
technical 

document 
Complete internal 

technical review 
Submit and 

publish paper Aobo Li

Task 1b: BDT for LEGEND

Begin BDT analysis 
of L-200 

commissioning 
data 

Present early 
results internally

Present results at 
APS DNP Meeting 
, Complete 
internal technical 
document

Complete internal 
technical review , 
Incorporate into 
analysis chain. 

Publish first 
LEGEND-200 

results, including 
BDT analysis 

Henry Nachman, 
Aobo Li

Task 2: Data Cleaning
Begin testing 

framework 
Complete 

framework 

Present early 
results, 
Incorporate into 
analysis 
framework 

Write technical 
paper 

Publish technical 
paper Esteban Leon

Task 3: Electronics Emulation Begin framework 
Write and publish 

technical paper

Publish physics 
paper using test 

data

Implement for 
analysis and pulse 
shape simulations 

Provide 
recommendations 
for LEGEND-1000 

Publish LEGEND-
200 background 
model, 
incorporating 
emulation

Aobo Li, Kevin 
Bhimani, Julieta 
Gruszko

Task 4: High-Powered 
Computer

Order 
components

Receive 
components

Complete 
assembly and 

setup. 
Aobo Li, Julieta 
Gruszko, E. Leon

Task 5: Semi-/Self-Supervised 
Learning

Build  network 
structure 

Begin tests of SSL 
on pulse shape 

simulations 

Integrate data-
driven and 

simulations-based 
networks. 

Esteban Leon, 
Aobo Li, Julieta 
Gruszko
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Budget

FY21 ($k) FY22 ($k) Totals ($k)
Funds allocated 226 224 450
Actual costs to date 215 211 13
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LEGEND Collaboration

~270 members from 55 institutions across 12 countries

Mission: The collaboration aims to develop a phased, Ge-76 based double-beta decay 
experimental program with discovery potential at a half-life beyond 1028 years, using existing 

resources as appropriate to expedite physics results.
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Pulse Shape Analysis with Recurrent Neural Networks (L. Paudel): A Preview

• Using the full MAJORANA
DEMONSTRATOR dataset, search for 
isomeric gamma transitions to study 
rare cosmogenic decays; use ML to 
extract decay energies and timing

• Also study whether traditional 
multi-site rejection can be improved 
with ML

• RNN used to process waveform 
data, with attention mechanism 
allowing network to “zoom in” on 
relevant information for the specific 
task

• Showing good results in both 
classification and pile-up parameter 
extraction Network is able to correctly extract 

energy ratio of pile-up pulses

Wednesday, 9:45 AM
L. Paudel
D12.00004 : Pulse-
Shape-Based Analysis 
with Recurrent Neural 
Networks in the 
MAJORANA 
DEMONSTRATOR
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L1000 Design Optimization (A. Schuetz): A Preview
• L1000 has a potential cosmogenic background 

from neutron activation of 76Ge
• Simulations of this background are complex and 

make it computationally expensive to study 
potential neutron moderator configurations

• Instead, train emulator using a combination of fast 
low-fidelity simulations with slow high-fidelity 
simulations, using active learning

Linear Multi-Fidelity Model Fit
77

(m
) G

e 
Pr

od
uc

tio
n 

Ra
te

Radius (cm)

Friday, 9:15 AM
A. Schuetz
L08.00002 : Machine 
learning based design 
optimization for the search 
of neutrinoless double-beta 
decay with LEGEND
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L1000 Design Optimization: Motivation
• L1000 has a potential 

cosmogenic background from 
neutron activation of 76Ge

77Ge

76Ge

77mGe

77mAs

77As

(19±2)%
160 keV

Qβ-  =  2.7 MeV

54 s

11 h

114 µs

39 h

(58±4)%

(15.5±1)%

(30±1)%
211 keV

265 keV>195 keV

1/2-

7/2+

0+

9/2+

5/2-

3/2-

neutron 
capture

gamma cascade 
(>6.1 MeV)

(50±10)%

(50±10)%
cosmogenic production

cosmogenic production

• Moderating neutrons increases 
probability of neutron capture in Ar 
active shield instead of Ge

• What is the optimal design for the 
neutron moderator panels?
– Simulations are computationally expensive, 

with many free parameters
– Instead, train an emulator to choose which 

combinations to simulate

Collaboration with 
Machine-learning 
Optimized Design 
of Experiments 
(MODE Collaboration) 
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L1000 Design Optimization: Network Design

• Combine fast low-
fidelity simulations with 
slow high-fidelity 
simulations

simulation with 25k primary 
neutrons (~ 0.08 CPUh)
simulation with 107 primary 
muons (cosmic muon showers) 
(~200 CPUh) 

• Gaussian process used 
for surrogate model

Bayesian Model with Multi-Fidelity

Design 1: [Mod. Thickness, ...] → Emulator → 77Ge Reduction efficiency 

Design 2: [Mod. Thickness, ...] → Emulator → 77Ge Reduction efficiency 
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L1000 Design Optimization: Active Learning

Gradient-based 
optimizer over 
acquisition 
function used 
to find the next 
point to 
simulate

77
G

e 
Pr

od
uc

tio
n 

Ra
te

Results coming soon…
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Interpretable BDT: Motivation

BDT method developed to…
• Utilize all the correlations to improve background 

reduction
• Reduce the need for additional targeted cuts like LQ 
• Develop method for future experiments and rapid 

characterization
– Reduce need for detector-by-detector calibration 
– Reduce need for run-by-run calibration
– Address increased correlations in larger-mass 

detectors
• Leverage interpretability to learn from the machine
Applied to full data set from the MAJORANA DEMONSTRATOR

Due to charge trapping and charge cloud diffusion in the 
detector bulk, traditional analysis parameters are often highly 
correlated: standard analysis fits the largest linear bi-variate 
correlations detector-by-detector and corrects for them
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Interpretable BDT: Network Design

• Boosted Decision Tree using traditional pulse shape analysis parameters, implemented in 
LightGBM

• Two networks, using different training data sets:
– MSBDT tags multi-site events, trained with 228Th calibration data
– ɑBDT tags surface events, trained with background events from 0𝜈ββ runs; uses SMOTE-MC to 

augment data and create larger sample of training events

• Distribution matching performed 
for “non-primary” features

• Shapley value used to interpret 
network results and improve 
traditional analysis
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Interpretable BDT: Results

MSBDT:

αBDT:



50

Ju
lie

ta
 G

ru
sz

ko
| M

L 
fo

r G
e 

0ν
ββ

|  
D

N
P 

20
23

Interpretable BDT: Results

• Difference driven by late addition of new analysis parameter, which was not included in BDT
• Comparable result with far fewer person-hours! No detector-by-detector or run-by-run secondary calibration 

needed.
• Interpretability study shows that BDT has “discovered” known correlations between parameters
• Feeds back to improve traditional analysis: choose between similar parameters based on importance and 

implement new PSD based where BDT-outperforms 
• Now being applied to LEGEND characterization data and exploring the use of lower-level parameters

PRL 107, 
014321 
(2023)


