AI for Optimized SRF Performance of CEBAF Operations

Chris Tennant

for the Jefferson Laboratory Team DOE PI AI/ML Exchange Meeting | November 30, 2022



Outline

• Jefferson Laboratory

• FOA LAB 20-2261: Year 2 Status

- ✓ Cavity Instability Detection
- ✓ C100 Fault Prediction
- ✓ Field Emission Management

Project Summary

✓ Deliverables and Schedule
 ✓ Budget

"AI for Optimized SRF Performance of CEBAF Operations"

The project builds on a recent successful effort at Jefferson Lab to implement Al at CEBAF and seeks to extend the work for optimizing SRF operations. Specifically, the proposal presents a multi-faceted approach to:

- A. develop tools to automate cavity instability detection
- B. provide real-time fault prediction for C100 cavities
- C. minimize radiation levels due to field emission in the linacs

Improving SRF performance in these ways would translate to increased beam availability and reliability of CEBAF, increased beam-on-target for nuclear physics users, and meet DOE's mission to maximize scientific output per operating dollar. DEPARTMENT OF ENERGY OFFICE OF SCIENCE

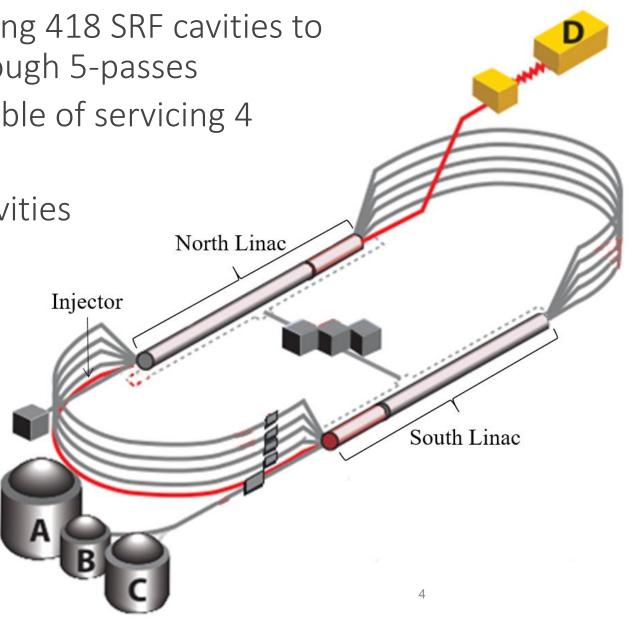
BASIC ENERGY SCIENCES HIGH ENERGY PHYSICS NUCLEAR PHYSICS

DATA, ARTIFICIAL INTELLIGENCE, AND MACHINE LEARNING AT DOE SCIENTIFIC USER FACILITIES

DOE NATIONAL LABORATORY PROGRAM ANNOUNCEMENT NUMBER: LAB 20-2261

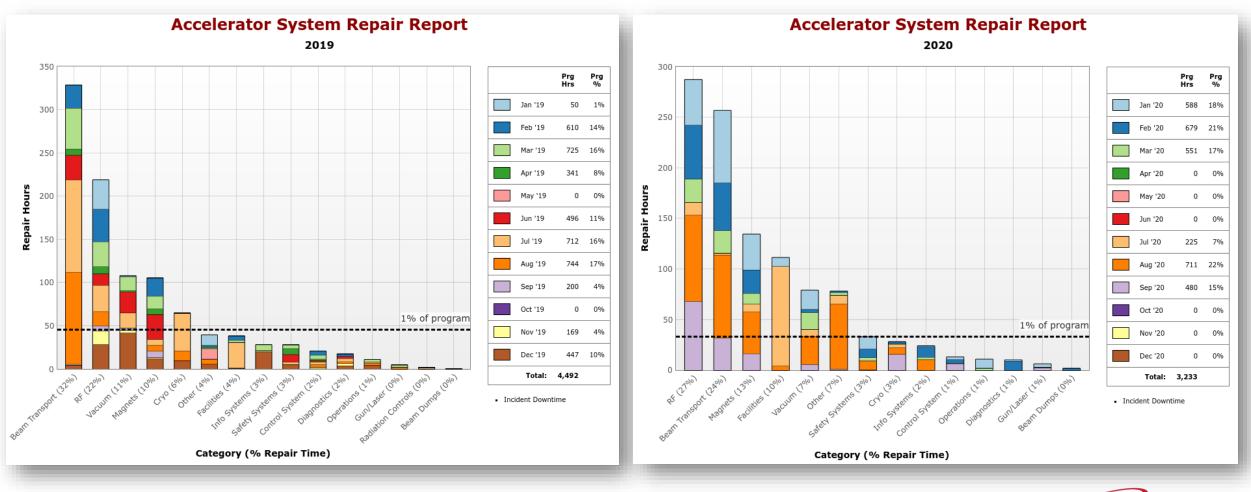
Continuous Electron Beam Accelerator Facility

- CEBAF is a CW recirculating linac utilizing 418 SRF cavities to accelerate electrons up to 12 GeV through 5-passes
- it is a nuclear physics user-facility capable of servicing 4 experimental halls simultaneously
- the heart of the machine is the SRF cavities



CEBAF Down Time Manager

• RF related issues are consistently one of the biggest contributors to downtime



DOE AI/ML PI Exchange Meeting

5

on Lab

PROJECT A

PI: Dennis Turner Graduate Student: Hal Ferguson (ODU)

Project A: Cavity Instability Detection

• <u>Goal</u>:

automate the process of identifying unstable SRF cavities

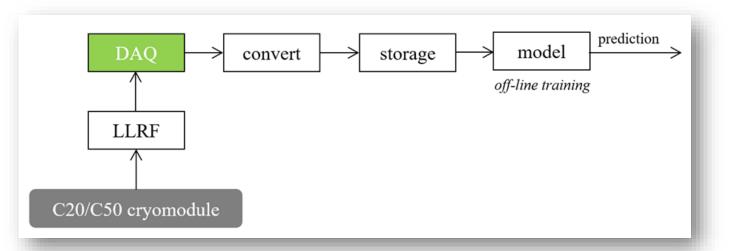
<u>Description</u>:

SRF cavities can become unstable without presenting faults, identifying these unstable cavities with present diagnostics is difficult and time-consuming

• <u>Solution</u>:

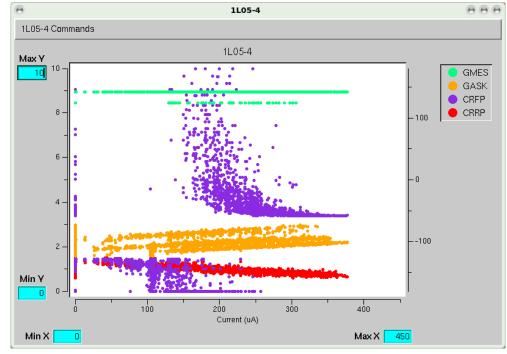
(1) develop and install a new fast DAQ system for the legacy SRF cavities

(2) apply ML to identify unstable cavities



Cavity Instability Detection: Current Approach

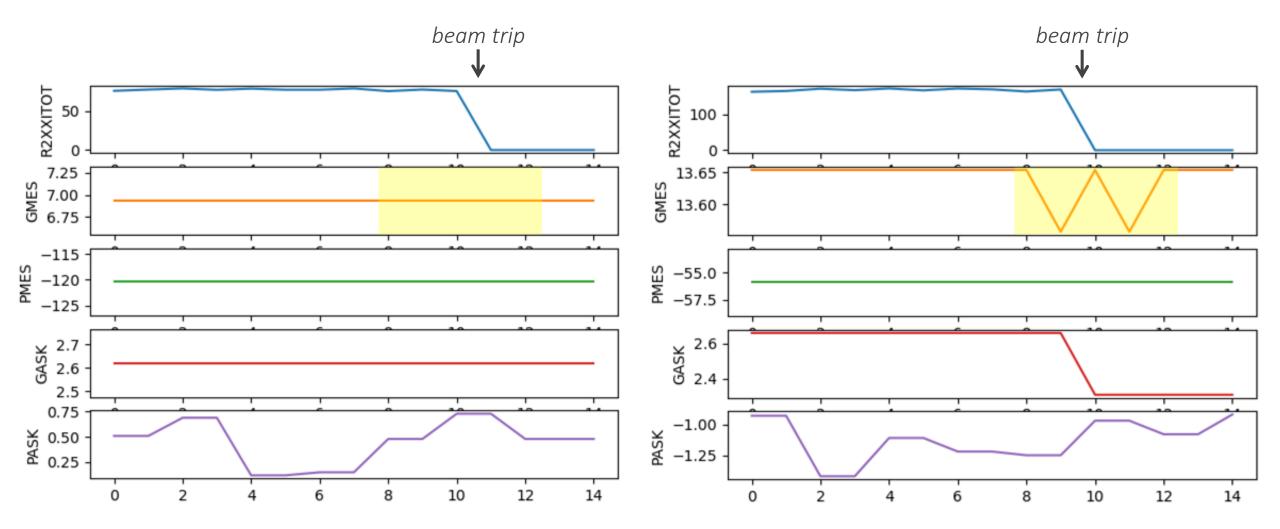
RF Analyzer Tool



- note, this represents an obvious example
- not all instances are so easily detectable by an operator

Cavity Instability Detection: Slow Data

• collect and label "slow" data from the archiver



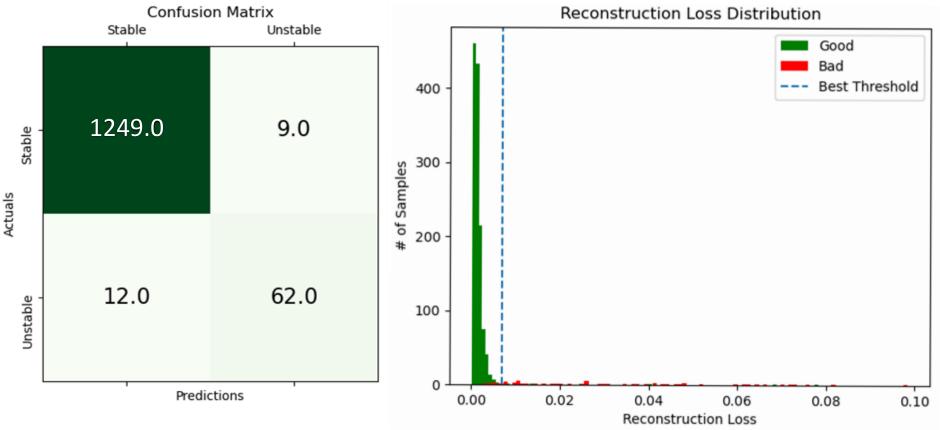
Cavity Instability Detection: Slow Data

• autoencoder architecture

✓ train on "normal" samples, anomalous conditions revealed in poor reconstruction errors

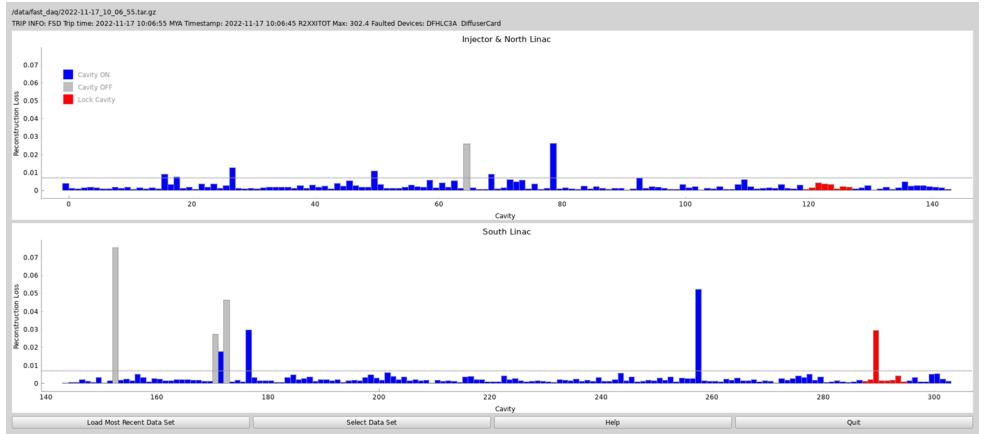
at the chosen threshold:

```
accuracy = 0.9842
precision = 0.9928
recall = 0.9904
F1-score = 0.9916
```



Cavity Instability Detection: User Interface

- displays reconstruction loss per cavity using archived data for one trip
- higher reconstruction loss \rightarrow higher likelihood that the cavity presented an instability
- clicking on a bar for a particular cavity opens a plot of the raw archived data



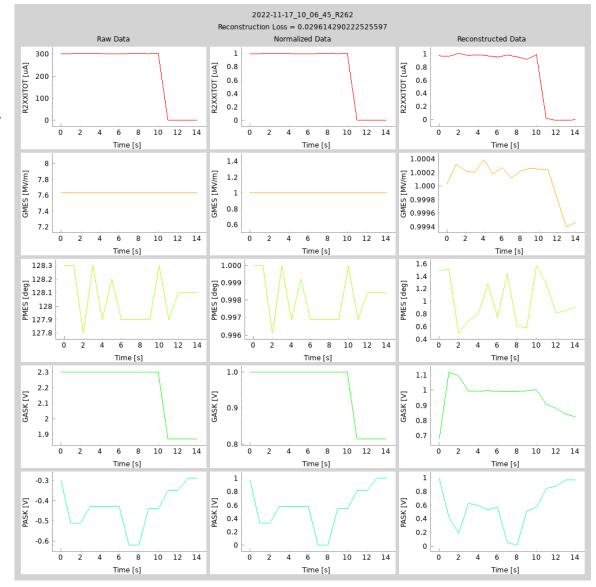
November 30, 2022

DOE AI/ML PI Exchange Meeting

Cavity Instability Detection: User Interface

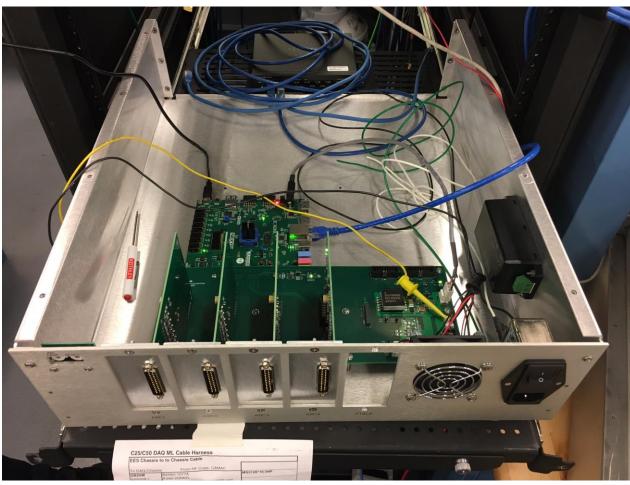
- operator interface is nearly ready for deployment
- documentation and installation remain
- an identical interface will be created to display results of the fast DAQ autoencoder model

note PMES instability around the time of trip ightarrow



Cavity Instability Detection: Data Acquisition System (DAQ)

- all parts procured, fabrication and testing in progress
- 20 DAQs for NL (reduced scope due to rising costs)

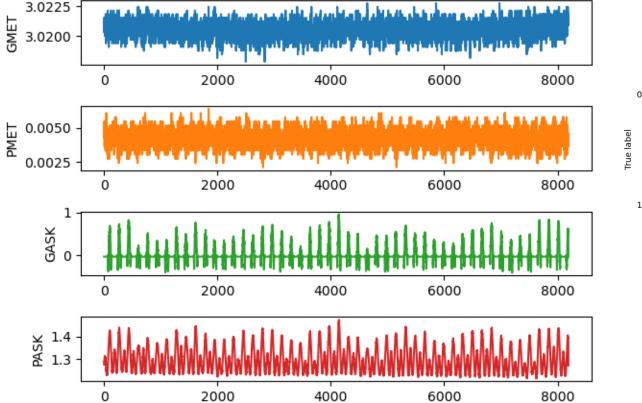


November 30, 2022

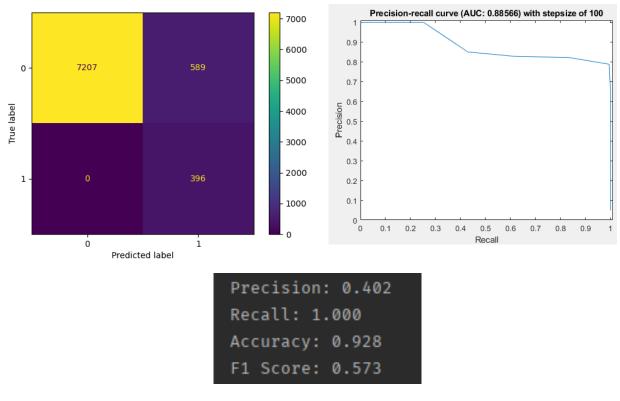
DOE AI/ML PI Exchange Meeting

Cavity Instability Detection: Data Acquisition System (DAQ)

- prototype chassis installed and running software collecting data
- working on autoencoder using this fast data



raw data for one cavity



PROJECT B

PI: Chris Tennant Graduate Student: Md. Monibor Rahman (ODU)

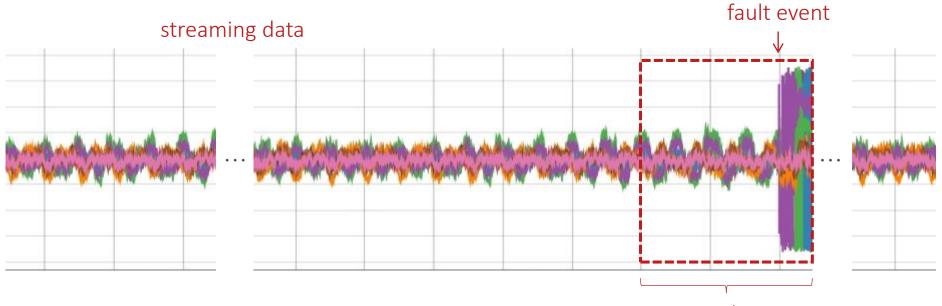
Project B: C100 Fault Prediction

• <u>Goal:</u>

Proactively predict if a C100 cavity fault will occur

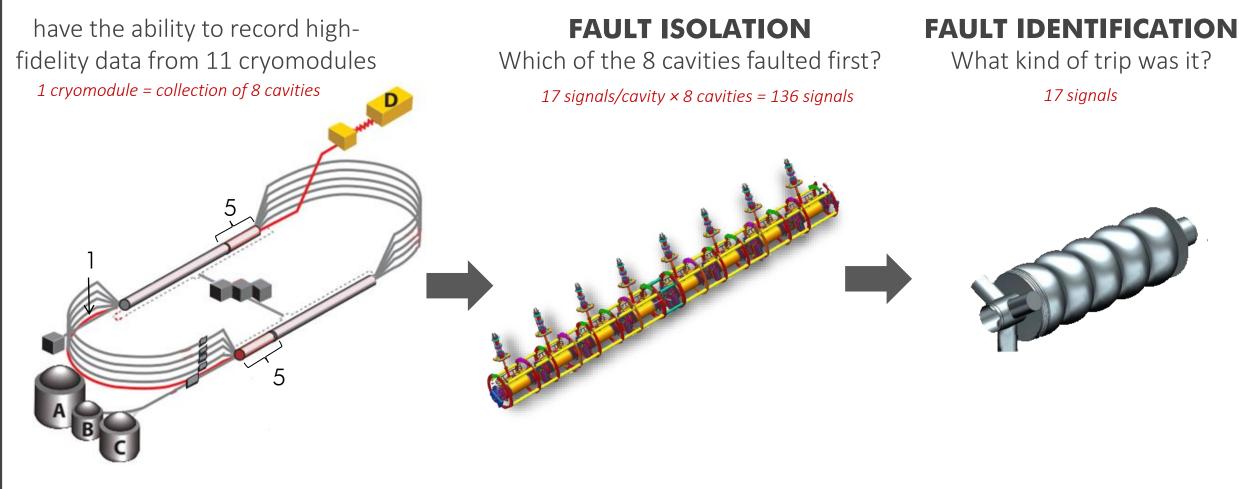
Description:

Currently deployed ML models analyze data *after* a fault has occurred. Investigate the use of machine learning to predict if a fault will occur.



8,192 samples \times 0.2 ms/sample = 1.64 seconds

C100 Fault Isolation and Identification: Present



train a model to correctly classify the <u>cavity</u> and <u>type</u> of RF fault given waveform data

machine learning

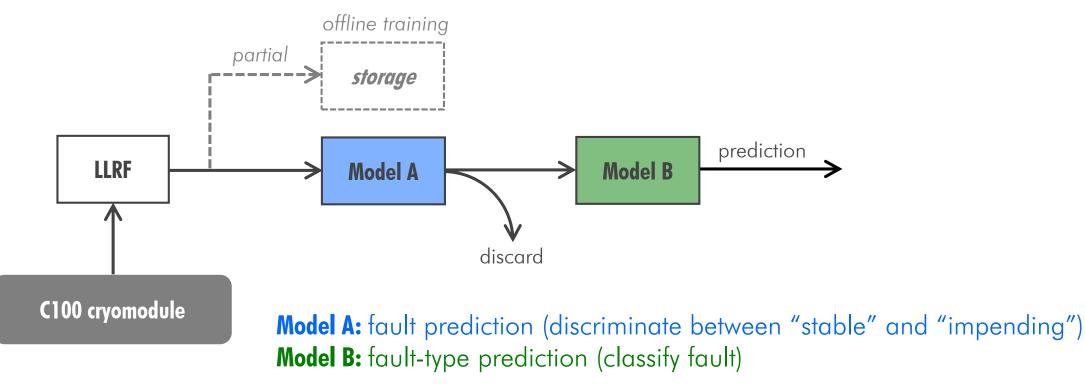
multi-class classification

time-series data

Fault Classification \rightarrow Fault Prediction

- small portion of waveforms around fault event are used for training classifiers

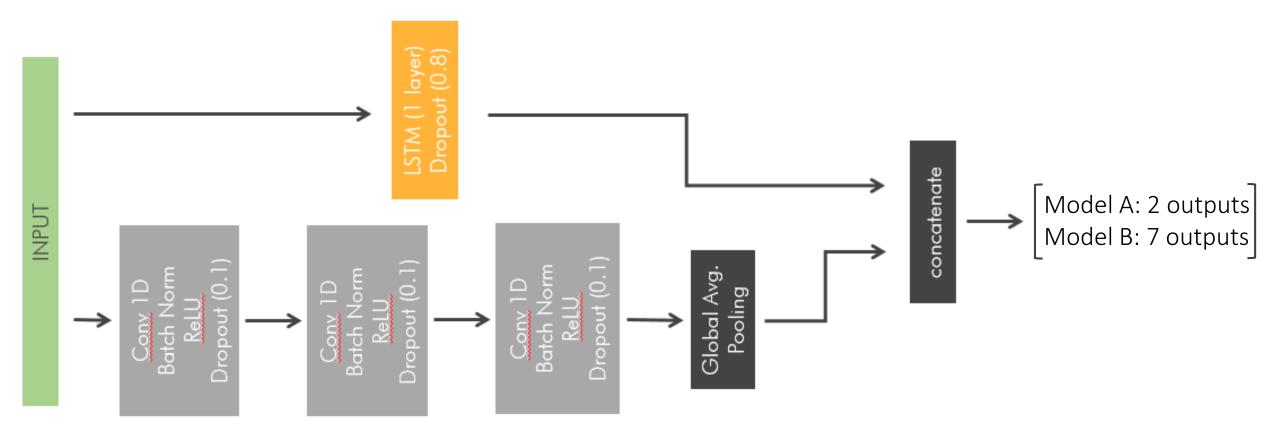
 uses static datasets
- modifications to LLRF system will allow us to continuously stream data
- investigate if data prior to fault contains enough information to predict event



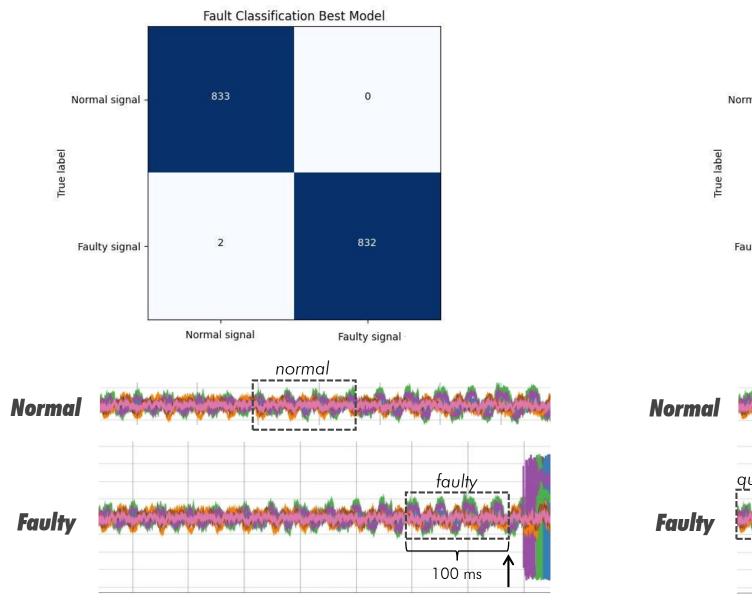
DOE AI/ML PI Exchange Meeting

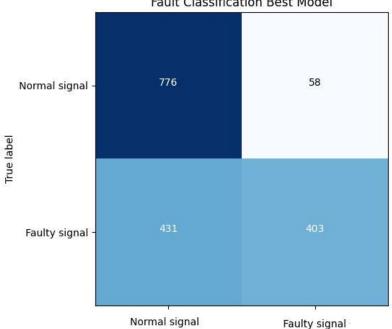
Hybrid Deep Learning Model for Fault-type Prediction

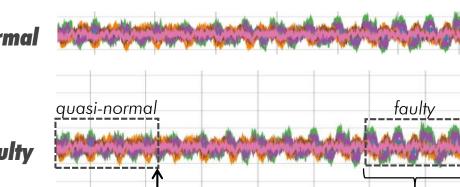
• 1D CNN – LSTM model architecture for *both* model A and B



Model A: Binary Classifier







-1435 ms

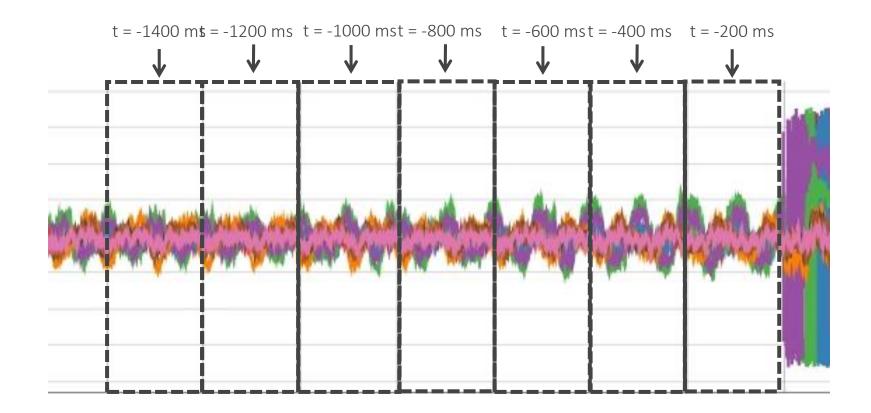
100 ms

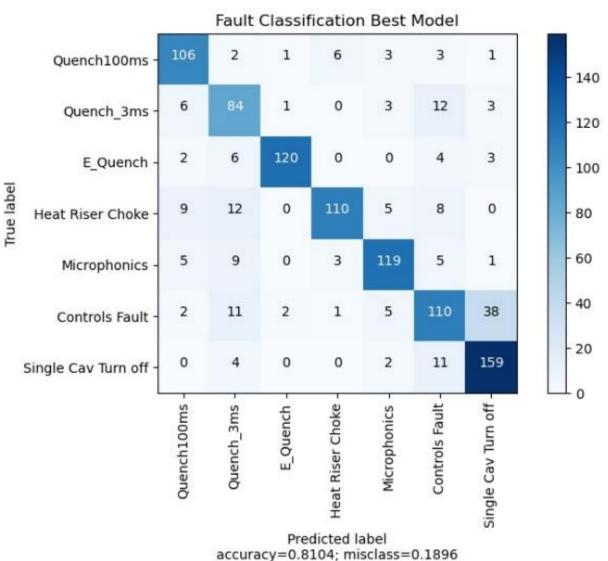
Je

-5 ms

Fault Classification Best Model

can data prior to event accurately predict the fault type?
 ✓ use saved waveforms

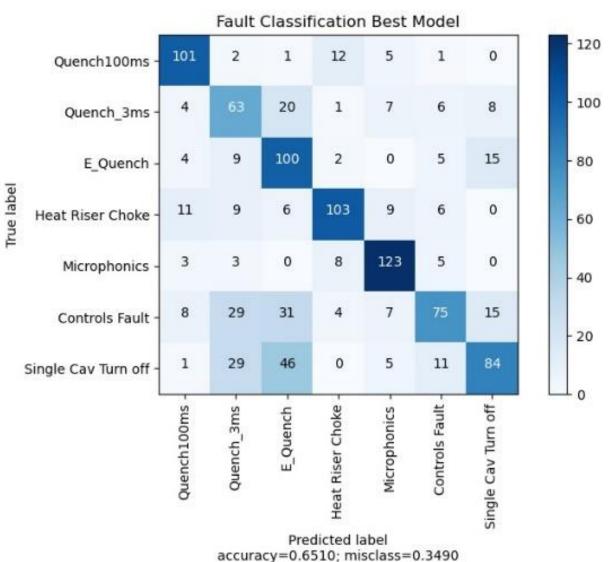




0 ms prior to fault

November 30, 2022

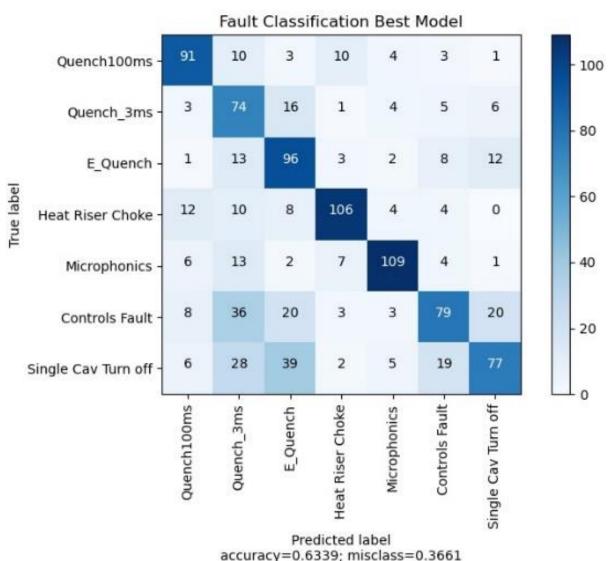
Jefferson Lab



20 ms prior to fault

November 30, 2022

Jefferson Lab



50 ms prior to fault

November 30, 2022

Fault Classification Best Model										
	Quench100ms -	83	12	3	11	3	8	2		- 100
True label	Quench_3ms -	7	75	15	0	2	6	4		100
	E_Quench -	6	9	88	2	4	13	13		- 80
	Heat Riser Choke -	10	17	2	101	7	7	0		- 60
	Microphonics -	3	9	5	4	115	6	0		- 40
	Controls Fault -	7	24	29	7	4	80	18		- 20
	Single Cav Turn off -	4	27	30	1	7	33	74		
		Quench100ms -	Quench_3ms -	E_Quench -	Heat Riser Choke	Microphonics -	Controls Fault -	Single Cav Turn off -	2 U	
accuracy=0.6179; misclass=0.3821										

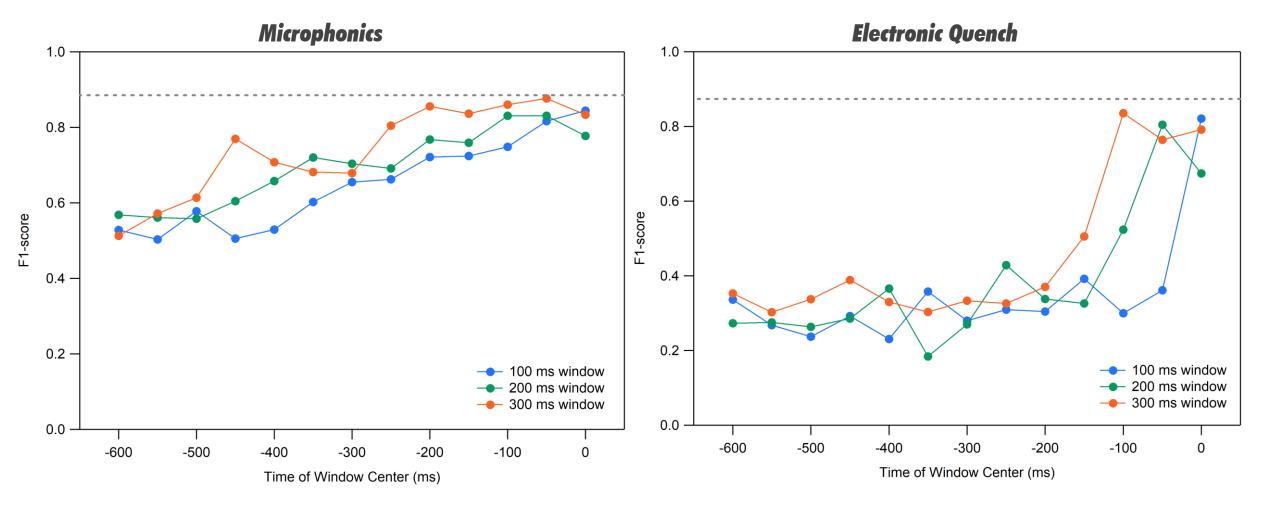
100 ms prior to fault

accuracy=0.01/9; misclass=0.3821

25

Jefferson Lab

• initial results suggests that for some fault types, prediction is possible



PROJECT C

PI: Adam Carpenter and Riad Suleiman Graduate Student: Kawser Ahammed (ODU)

Project C: Field Emission Management

• <u>Goal</u>:

maintain low levels of field emitted (FE) radiation without invasive interruptions to physics

<u>Description</u>:

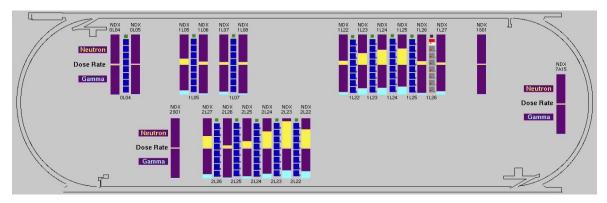
use ML to model radiation levels and allow for off-line optimization of gradient distribution, identify cavities where FE onsets have changed

• <u>Solution</u>:

optimize surrogate model to minimize radiation via gradient reduction

Field Emission Management: Data Requirements

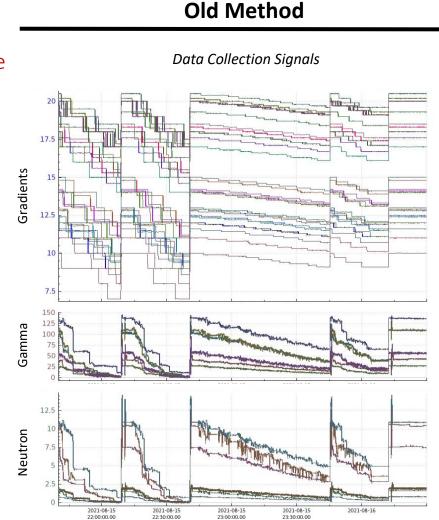
- Jefferson Lab designed, installed, and commissioned a new neutron and gamma radiation detection system* focused on FE radiation
 - ✓operational August 2021
 - \checkmark measure neutron dose rates correctly in the presence of photon radiation
 - \checkmark detectors are "blind" to low energy photons and electrons
 - \checkmark integrated into EPICS with signals for gamma and neutron dose rates
 - ✓ wide dynamic range
 - ✓ currently have 22 detectors installed



Data Collection: New and Improved

• pros of new approach

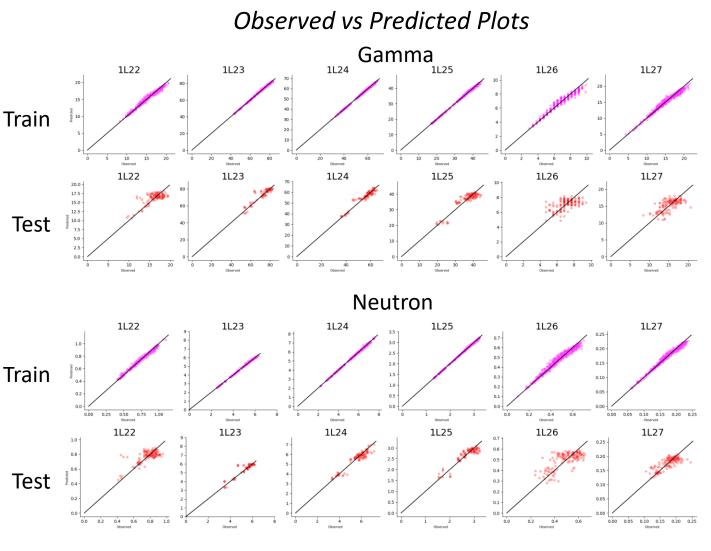
- \checkmark less correlated inputs
- ✓ better sampling of input space around operational values
- clearly indicates major field emitters
- cons of new approach
 - ✓ slower, so fewer samples
 ✓ smaller range of radiation values observed
- streamlined process, able to be run by operators



New Method Data Collection Signals 17. 12.5 and the later of the later 2022-07-14 2022-07-14 2022-07-14 2022-07-14 2022-07-14 2022-07-14 09:00:00.00 09:30:00.00 11:00:00.00 11:30:00.00 10:00:00.00 10:30:00.00

Data Collection: Models

- no FE onset required as input
- no feature engineering
- currently training MLP and XGBoost models
- XGBoost performs better, likely due to limited data
 - ✓ no extrapolation likely pushes us to MLP



XGBoost

XGBoost Results on September 7 Data

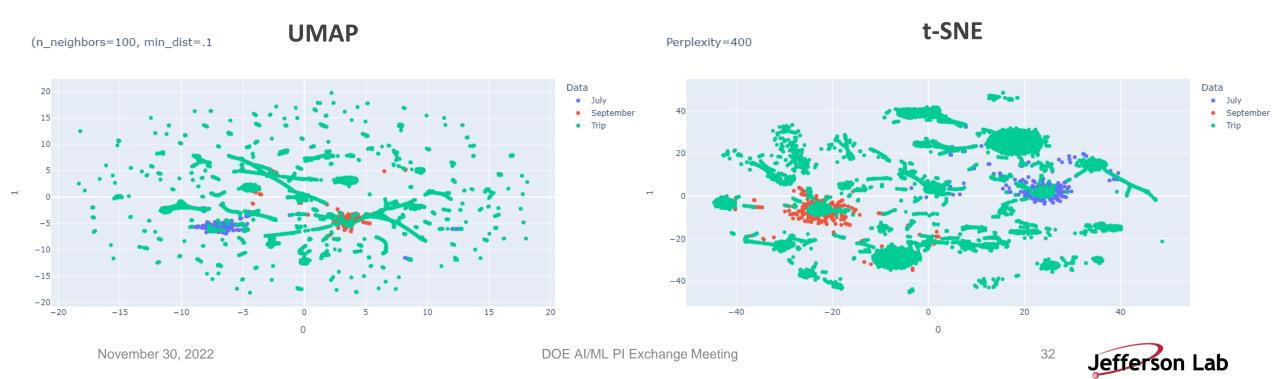
	R-Squared	MSE	MAE	MAPE
Train	0.981	0.062	0.133	0.012
Test	0.652	1.815	0.701	0.062

Dimensionality Reduction

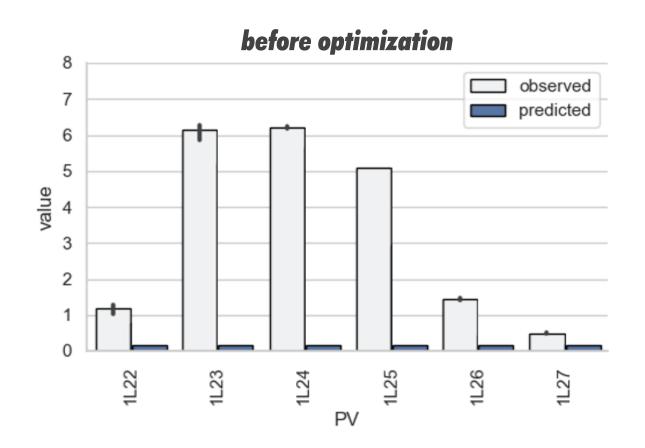
use dimensionality reduction techniques to visualize input data
 ✓ reduce 32-dimensional gradient inputs to 2-dimensions

• assess:

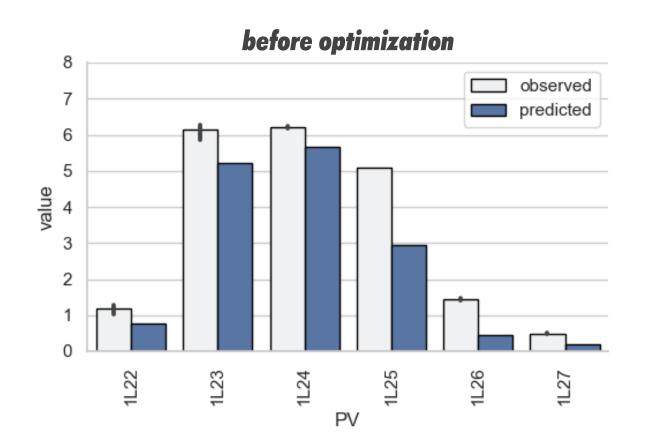
- \checkmark how similar or dissimilar data sets are
- ✓ how does (parasitic) "Trip" data compare to data collected invasively (i.e., "July")



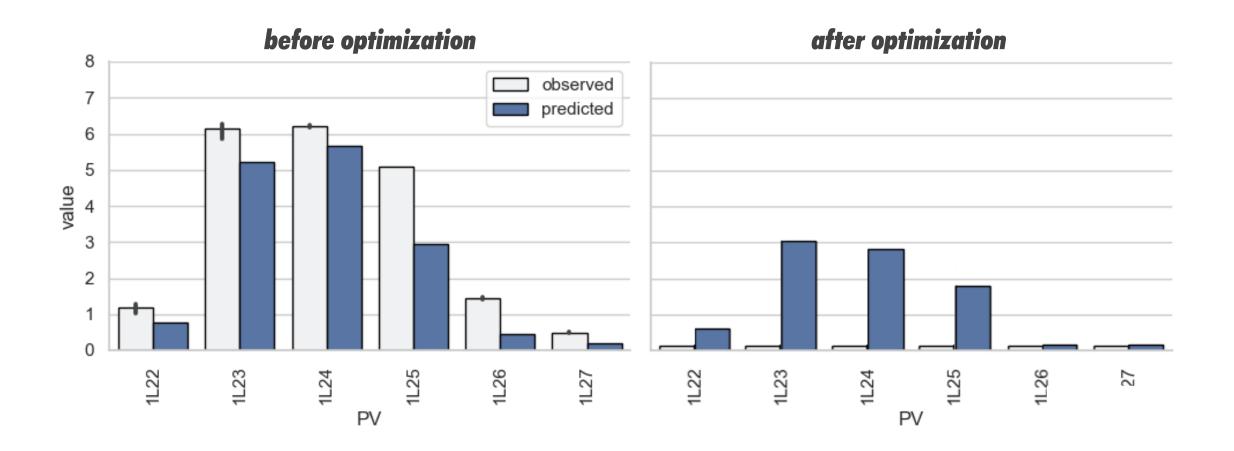
- 1. set CEBAF to same gradient distribution as September 7 baseline
- 2. apply model-based optimized gradients to CEBAF



- 1. set CEBAF to same gradient distribution as September 7 baseline
- 2. apply model-based optimized gradients to CEBAF

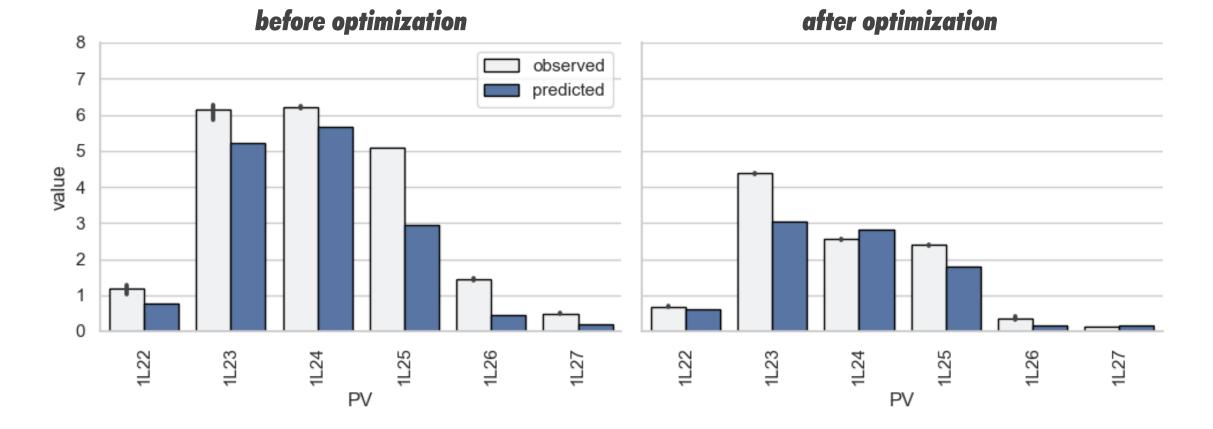


- 1. set CEBAF to same gradient distribution as September 7 baseline
- 2. apply model-based optimized gradients to a portion of the NL in CEBAF



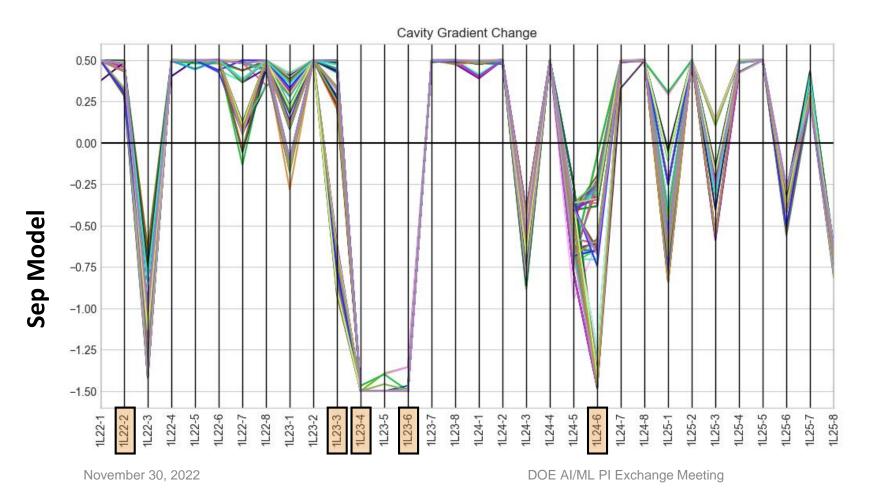
- 1. set CEBAF to same gradient distribution as September 7 baseline
- 2. apply model-based optimized gradients to CEBAF

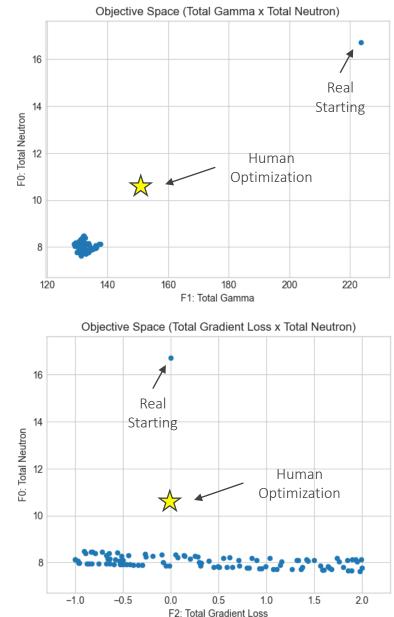
12 rem/hour decrease for 5 MV/m reduction in gradient



Field Emission Management: Optimization

• transition to a genetic algorithm (GA) to optimize gradient distributions





SUMMARY

Data: The Fuel for Machine Learning

• accelerators produce a lot of data

✓ CEBAF continuously archives 300,000+ signals

- however, it's not all useful for ML applications
- ML projects at JLab only possible because of newly available data

C100 cavity fault classification[#] → digital LLRF + waveform harvester C100 cavity fault prediction → digital LLRF + streaming data field emission management → NDX detectors* cavity instability detection → fast DAQ

• data reliability is critical!

#work supported by JLab LDRD*P. Degtiarenko, US Patent 10,281,600

Data: The Fuel for Machine Learning

- focus in Year 2 was developing models using alternate available data
- significant delays have plagued our ability to use fast and/or streaming data
 - A. cavity instability detection: DAQ system

supply chain and other pandemic related issues caused delays (2+ years)

- B. C100 fault prediction: dual-buffer firmware upgrade
 - bench tests ongoing, however experiencing 2-year delay from expected deployment
- C. field emission management: NDX detectors
 - built, tested, commissioned, installed, and operational
- focus of Year 3 will be to continue making progress in getting systems in place to collect data required for developing machine learning models
- have or will have sources of high quality data to enable continued work in this area for the foreseeable future (beyond the life of the FOA)

Year 2 Progress

Project A: Cavity Instability Detection

- DAQs in the process of being fabricated, tested and installed
- good progress on ML model for slow and fast data, user interface developed **Project B: C100 Fault Prediction**
- binary classifier shows excellent performance and will be deployed shortly
- fault-type classifier shows good performance as well

Project C: Field Emission Management

- proof-of-principle demonstration showing the utility of the surrogate model
- work to better understand data and how to best maintain model performance over time
- three posters presented at 2022 NAPAC conference
 - ✓ "Initial Studies of SRF Cavity Fault Prediction at Jefferson Laboratory"
 - ✓ "Using AI for Management of Field Emission in SRF Linacs"
 - \checkmark "SRF Cavity Instability Detection with Machine Learning at CEBAF"

Project Summary: Major Deliverables and Schedule

CEBAF Scheduled Accelerator Down: March – July, 2023

Project	Deliverable	Date
	Installation of 20 production DAQs	
	Deployment of user interface	
Cavity Instability Detection	Training and testing of ML model using <i>fast</i> data	
	Incorporate transient energy signals from BPM data	
	Deploy ML model in CEBAF	07/2023
	Deploy binary classifier in CEBAF for testing and evaluation	12/2022
C100 Fault Prediction	Train and test ML regression model (deploy if performance is acceptable)	01/2023
C100 Fault Prediction	Deploy fault type classifier to work with binary classifier	
	Implement streaming data capability and use with deployed models	07/2023
	Use dimensionality reduction to visualize and understand data sets	02/2023
Field Emission Management	Develop optimization software for use with surrogate model to optimize gradients	02/2023
	Develop whole (NL) linac surrogate model	07/2023

Project Summary: Annual Budget

	FY2020 (\$k)	FY2021 (\$k)	Total (\$k)
a) Funds allocated	450,000	450,000	\$900,000
b) Actual costs to date	450,000	214,287	\$664,287

- took awhile to find second graduate student
- took even longer to find third graduate student
- have not been able to replace PostDoc

Acknowledgements

Kawser Ahammed Rama Bachimanchi Adam Carpenter Hal Ferguson Khan Iftekharuddin James Latshaw Jiang Li Theo McGuckin Md. Monibor Rahman **Riad Suleiman** Dennis Turner And others!

DOE AI/ML PI Exchange Meeting

Thank You