Intelligent Experiments Through Real-Time Al

Fast Data Processing and Autonomous Detector Control
for sPHENIX and Future EIC Detectors

Ming Liu
Los Alamos National Laboratory
for the Fast-ML Team

DOE Fast-ML Presentations
November 30, 2022



Today’s Presentations

1.Overview, 10’
- Ming Liu (LANL)/Gunther Roland(MIT)/Nhan Tran(FNAL)/ Dantong Yu (NJIT)

2. Physics simulation and Al-ML algorithms, 10’
- Dantong Yu (NJIT)/Cameron Dean(MIT)/Zhaozhong Shi(LANL) /Hang
Qi(MIT)/Hao-Ren Jheng(MIT)/Beilei Jiang(NTU)

3. HLS4ML and firmware implementation, 5’
- Micol Rigatti (FNAL)/Phil Harris(MIT)/Nhan Tran(FNAL)/

4. Demonstrator implementation, 5’
- Jakub Kvapil (LANL)/Yasser Corrales(MIT)/Noah Wuerfel(LANL)/Jo
Schambach(ORNL)/Kai Chen(CCNU)/Lang Lei(CCNU)/Beilei Jiang(NTU)
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Overview

- Ming Liu
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SPHENIX at RHIC

2015 NSAC Long Range Plan for Nuclear
Science priority: sSPHENIX Experiment at RHIC

® Probe the inner workings of QGP by resolving its
properties at shorter and shorter length scales

® Complementary to LHC experiments to study
relativistic heavy-ion collisions

Heavy Flavor physics — a key pillar of RHIC science

11/30/22

LONG RANGE PLAN
for NUCLEAR SCIENCE
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Project Goals and Deliverables

Selective streaming real-time Al and autonomous detector control:
Deliver a demonstrator for p+p and p+Au running for sPHENIX -> generalizable for
applications in experiments at the EIC, improve b-hadron physics in p+p/Au by >100x

INTT Silicon Strips:
78um x 16mm (A)/20mm (8)

4 interconnected key tasks:
Constraints:

MVTX data rate = 300 kHz
INTT data rate = 9.4 MHz
Trigger latency = 10pus

/ IVTX Silicon pixels:
> o 27um x 29um 1
. l-’ R~
sPHENIX Tracking:
- MVTX + INTT(fast) @‘ 4
- TPC(slow) o e e e
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Leadership and Technical Roles

Team of NP + HEP + CS

Los Alamos National Laboratory, Ming Xiong Liu, (Lead Principal Investigator)
Fermi National Laboratory, Nhan Tran, (Co-PI)

Massachusetts Institute of Technology, Gunther M Roland (Co-PI)

New Jersey Institute of Technology, Dantong Yu (Co-PI)

Leadership structure of the team The project team will be led by Lead Principal Investigator, Dr. Ming
Xiong Liu of LANL, who is accountable to the DOE program leadership for the project’s overall success.
The team shares the responsibility and accountability for success. Within that structure, lead roles are
assigned to co-Principal Investigators (co-Pls), also referred to as key personnel. Dr. Liu will be the lead for
hardware design. Dr. Gunther Roland will be the physics lead in SPHENIX and EIC. Dr. Tran will be the
lead for Co-Design of Al software and Hardware. Dr. Yu will be lead for Deep Neural Networks Software
Design.

New teams joined later in early 2022:
Dr. Jo Schambach, ORNL, sPHENIX/EIC readout integration, SPHENIX MVTX and EIC/ePIC readout lead
Dr. Kai Chen, CCNU, FELIX-Al-Trigger hardware integration, FELIX developer at BNL for ATLAS, also sPHENIX

Prof. Song Fu, NTU, data acceleration in ML
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Technical Approaches and Highlights - | Jakub

* Objective 1 — Design, build, simulate, and benchmark a prototype streaming readout system
with Al-based fast online data processing and autonomous detector control system that meets
the physics and engineering requirements. To support this objective, we first aim to generate a
large volume of simulation data for heavy flavor decay events. We plan to design a prototype in the
simulated and the real sSPHENIX experimental environment and later apply the technology in the high
luminosity EIC experiments at RHIC. Our objective is to create a working prototype that serves as
a baseline and template for future upgrades. With this prototypical working solution, we target to
improve the heavy flavor samples from the current 0.05% yield to more than 10+%. (Task 1)

ST
- 111}

SPHENIX MVTX and TNFF=—— A Demonstrator Hardware Implementation
""qu\g,imuIations of p+p collision

Beam vertex(x.y)
alignment, calibration

GPU/CPU
SPHENIX — iy
: -/ { Sim‘,"aﬁon le-Link/’Cle g-Link X:CPé?\g/AI) '|:>
: i =~~~ (Online Buffer) | —— P —
Convert simulated hits-to SPHENIX real data (INTT) Fast HF
— = _/ trigger output

. like-bit=stream to feed FPGA/AI -
T ————— — \\s\§\ Streaming readout simulation data:
e el 8b/10b MVTX/INTT data (KC705) to FPGA/AI Engine (VC709)
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Technical Approaches and Highlights - Il pantong

* Objective 2 — Design advanced deep neural networks commensurate with sSPHENIX/EIC stream-

ing data requirements. We aim to design deep neural networks with the following goals: (a) network
size: neuron weights that fit in the FPGA block RAMs (BRAMs) of the FELIX cards in sSPHENIX/EIC
experiments, (b) handling the extremely low signal-to-noise ratio of hit images due to the sparse read-
out of the high-resolution MVTX and INTT detectors, (c¢) performance improvements: 10% improve-
ment over state-of-the-art triggering algorithms, and (d) minimal performance gap between simulated
data and real experiment readouts, and outstanding generalization capability. (Task 2)

Trigger Al Algorithm R&D

Implemented several models to solve the trigger detection problem: R B e aaRESs
- Directly applied GNN model to trigger detection problem (GNN)
- Added a global vector to the GNN model to represent some global feature (VPGNN)
- DiffPool model (DiffPool)
- VpGNN + DiffPool (GNNDiffPool) True_tracklets:
- ParticleNet, Giorgian S :
1) 90% BG rejection,  Sig_eff ~ 90%

. Another model we tried: Set2Graph (Affinity Matrix Prediction) 2) 99% BG rejection, i eff ~ 40%
Identify B-hadron event: MVTX
- Topology of B decay, . -
. nputs:
with Iarge DCA -raw hits
- Monitor collision point B, . Y e S A S
’ iy Activation Function/ mom L
o "a:?‘:. » /‘ *!!‘< N ! = ’
g ) | II — ' ‘ o
stable beam ' l/ | y 5 \ = ‘ =
dix,y)~100um  DCA_XY 4 4 P £t
Graph Convolutions Graph Convolutions i
Segment Classification (Hit Graph) i Track Construction Affinify Matrix Prediction (Track Graph) Trigger Detection
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Technical Approaches and Highlights - Il Micol/Phi

» Objective 3 — Deploy advanced deep neural networks within the FELIX system that are capable
of real-time reconstruction of heavy flavor events at high throughput. With the development of
advanced deep neural networks, a parallel strategy is needed to ensure that these networks can be
designed to operate at low latency and high throughput on the FELIX FPGA cards. This challenge
involves detailed Al/hardware co-design to ensure that the desired algorithms can be fit within existing
resources, and can achieve full throughput. (Task 3)

Keras
TensorFlow
PyTorch

hIS 4 ml FPGA flow

) Primary focus:
Compressed achieving low latency, real-time
model - HLS .
conversion | processing of data, and
deployment of algorithms with
’ : ASIC flow . . .
Machine learning model hlgh EffIClenCy
optimization, compression lf
T figurati A
\ﬂ;sns:?hsgu:;zuz?y FELIX 71 T@FNAR.
POWer, resource usage e <
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SPHENIX Readout and Al-ML HF Trigger Integration

. DCM-2 receives data from digitizer, zero-suppresses and packages
. SEB collects data from a DCM group (~20)
On DetGCtor RaCK Room . EBDC Event Buffer and Data Compressor (~40)
. Buffer Box data interim storage before sending to the computing center (6)
oHCal
iHCal s Buffer Box H
— Buffer Box H
INNER HCAL EMCaI TO
— Buffer Box H HPSS
100+ Gigabit .
8 (Computing Center)
TPC Crossbar Buffer Box
i — Switch
' INTT Buffer Box
——
Buffer Box ﬁ
1

Streaming Readout (SRO) + Al/ML
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From sPHENIX to EIC/ePIC: Streaming + Al/ML DAQ

from Jo’s talk at ePIC
collab. Mtg, 7/2022

(sPHENIX)
ePIC detector

O(2 Pbps) >

FEB = Front End Electronics Board
RDO = Front End Aggregation & E/O I/F
DAM = Data Aggregation Module
EBDC = Event Buffer / Data Compressor

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

1
Detector :
Control "
1
\ 4 :
1
BNV EBDC :
1
1
».\| EBDC -
i Online
AV EBDC : Data Filter
1
».\ | EBDC :
1
Net}Nork Online
EBDC 1. .
Switch Data Filter
1
» | EBDC i
1 .
» | EBDC ) Oniine
: Data Filter
» | EBDC i
[ 4>
5L EBDC I M
:
1

O(10 Tbps) >

0(0.5 Thps) >
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Table 2: Tasks and Milestones
Note: completed; in progress
TASK 1 TASK 11

From DOE proposall

TASK 111 TASK IV

Year 1
1. Software development and system design. We will first perform detailed SPHENIX physics and detector simulations
to design a real-time fast data processing and autonomous detector control and calibration system. In the meantime, we
will survey currently available Al models and design a system for offline training and domain adaptation for data and
MC. The physics and detector simulation results and the performance of hardware are used to tune the AT algorithms.
2. Hardware development and system integration. We will take advantage of the streaming readout capability of
the SPHENIX tracking system to implement continuous readout of two fast silicon tracking subsystems, MVTX and
INTT. A FPGA based fast tier-1 Al system will be developed to identity heavy flavor (HF) events in p-p collisions,

- "rl‘5 s £ 4 Ladda 1 s A"l"l]f‘.

Summary and Outlook

o0

* Produced full sSPHENIX Bhysics and detector simulations
of heavy quark and QCD backgrounds

* Successfully developed preliminary Al-algorithms for
SsPHENIX HF triggers

 Completed MVTX SRO
 Demonstrated INTT SRO
* Implemented a toy Al-algorithm in HLS4ML in FELIX

* Work in progress to implement full sSPHENIX trigger in a
simplified hardware

On track to accomplish all major goals in 2023

Future plan/proposal:

* Extend project by 2 years, 2024 ~ 2025
» Implement the demonstrator for sSPHENIX p+p run in 2024

» Develop EIC/ePIC TDR of SRO with Al/ML for EIC CD2(2024)
and CD3(2025) based on our work

11/30/22 Fast-ML Status and Plan @DOE P

By Q2
» Generate open heavy
flavor and QCD back-
ground events for simula-
tions (LANL, MIT)

» HF trigger algorithm
development for FPGA
(FNAL, LANL, NJIT)

» MVTX streaming read-
out (LANL)

» INTT streaming read-
out (MIT)

» Beamspot interaction
and readout simulation
(FNAL)

» Displaced tracks and

anomaly simulation
(ENAL. MIT)
BY QS ————————————
» Develop fast tracking | » Design real-time GPU » hls4ml implemen- » Preliminary design of
algorithms using MVTX training machine (MIT, tation and algorithm streaming and automated
and INTT hit information NIIT) development (FNAL, controls of online GPU-
(LANL, MIT, NJIT) MIT) based training system
{P\AIT‘ \IIIT;
By Q4
» Complete a prelimi- § » ML, Graph NN train- » FPGA  implementa- » Simulation and training

nary design of HF trig-
ger Al offline (FNAL,
LANL, NJIT)

ing, by NJIT and MIT

ion of HF trigger with
MVTX and INTT (All)

(MIT, NJIT)

We will focus on the system integration and continue to

3L

e

m.

improve and benchmark the performance of software,

By Q5 & Q6

» Interface between
Al system and MVTX
detector Data Input by
(FNAL. LANL)

» Interface between Al
system and TPC Readout
Control (FNAL, LANL)

» Design  new GNNs

» hls4ml customization

» GPU deployment for

By Q7

» Continue to improve
algorithms for HF tag-
ging (LANL)

(Encoder, Alttention, for FELIX board (FNAL, autoencoder and training
Particle-Net) algorithms LANL) (FNAL, MIT)
with  hls4ml (MIT, » FPGA, GPU system in-
NIJIT) tegration and evaluation
(MIT, NJIT)
» Improve algorithm » Multi-FELIX  Board » ML model and domain

with hls4ml on FPGA
(FNAL, NJIT)

Integration (LANL)
» Validation and test with
FELIX boards (All)

adaption update (MIT,
NJIT)

By Q8

11/11/22
/ >/[¥enchmark system performance with SPHENIX or test beam data (All)




Physics
simulation and
Al-ML algorithms

- Dantong Yu
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Al Trigger Pipeline

1. Fetch events from event buffer to Processing

‘

2. Data Pre-processing Clustering

3. Tracking + Outlier hits Removal

4. Triggering

‘

5. Triggers on TPC
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Simulations

Most simulations have focused on sPHENIX
» ePIC detector simulations for EIC are under rapid changes

We simulated 2 different physics events (all 200 GeV pp collisions)
» Minimum bias with all heavy flavor decays rejected for background
» DO=>K mt* in minimum bias for signal

Simulations have been improved throughout the year
» Added full service material for MVTX
» Added realistic hit duplication in MVTX from pixel pulse length

Dataset
» 8 million events - 50% signal/noise.
» 8 million events - 0.1% signal/noise.
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Algorithm Flow

* Strategy is to construct a large scale Al algorithm with all elements of trigger

> Algorithm is factorizable into core physics components
> Emulates the normal reconstruction workflow
> Use of core components allows for intermediate physics validation

Labelled

Track _ Displaced Vertices
Silicon Hits Displaced
Pixel Vertex Reconstruction

Hits

Al Algorithm Block

Bipartite

Graph NN Reconstructed
Al Algorithm Block Al Algorithm Block Track Momenta
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Tracking as Graph Neural Networks

rimm]

See also:
https://exatrkx.github.io/

 Graph neural networks are a popular way of
posing tracking problems in physics

1000 ~

800

> Sparse hits in space do not fit traditional ML architectures

600 A
> Growing sub-field of geometric deep learning

\ “ Y ‘
400 - N
NG A . |
WA » Datais structured as a graph of connected hits
= N

ol | | | » Connect plausibly related hits using geometric constraints
-1000  -500 0 500 1000 and learn best associations and parameters of connected
hits (tracks)
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Three Types of Potential Interactions in Model Event Decay

Track-to-global interactions, such as

Local track-to-track interactions, determining the collision vertex of

the event and potential secondary
vertices of decaying.

such as determining whether two
tracks share the same origin vertex.

pp collision ‘l/
Track Nodes Vertices

xiO €ij -Oaj

P P
/fk) v O * ~@
i
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Global-to-track interactions, such as

comparing each track's origin with
the collision vertex of the event.

Pair-wise Relations
(Set/Graph/Attention)

Graph Aggregation
(Bipartite Graph aggregation)
- vertexing

Graph Distribution and
Bypassing (Bipartite Graph)
- parent/daughter
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Bipartite Graph Networks with Set Transformer
(BGN-ST) Model Architectures

SEBA
o o readout 1|I— Output

/ x X vertices X:\
O
O

FF: Feed Forward Network

Input —

Set Encoder with
Bipartite Aggregator  input
(SEBA) Blocks

» Output
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Experiments: Physics Driven BGN-ST

Model #Parameters Accuracy AUC

Set Transformer 80,002 86.17% 91.75%

GarNet 284,210  86.22% 91.81%
PN+SAGPool 780,934  86.25% 92.91%
BGN-ST 363,426  87.56% 93.22%

1% signal/background ratio

Background Rejection Efficiency  Purity

* Excellent physics trigger 90% 72.5% 7.25%
performance for charm events 959%, 48.9% 9.78%

(o) (0) 0,
e Expect better results for e 15.0% 15.0%
beauty, work in progress 99.33% 10.5% 15.7%
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Status and Outlook

e Demonstrated BGN-ST outperforms selected state-of-the-art methods 12!

» Adopts the physics-aware concept and introduces explicit physics properties such as transverse
momentum

» Improves the task accuracy and AUC score by about 15%

» Architecture benefits from pairwise interactions between tracks and allows a two-way scattering
and gathering for effective information exchange and adaptive graph pooling

® Next step: from optimal performance of state-of-the-art methods, develop firmware
implementations

» Understand what is feasible and condense the model into latency and resource constraints

[1] Xuan, Y. Zhu, G. Borca-Tasciuc, M. X. Liu, Y. Sun, C. Dean, Y. C. Morales, Z. Shi, D. Yu, End-To-End Pipeline for Trigger Detection on Hit and Track Graphs in, Accepted by Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI.

[2] Xuan, G. Borca-Tasciuc, Y. Zhu, Y. Sun, C. Dean, Z. Shi, D. Yu, Trigger Detection for the sPHENIX Experiment via Bipartite Graph Networks with Set Transformer in European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 22).



hisdml translation and
firmware implementation

- Micol Rigatti and Phil Harris
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Hardware and Firmware Implementations

Selective data streaming in sSPHENIX will use the FELIX board. FELIX is a 16-lane Gen-3 PCle card with 48

transmitters and receiver optical links. The on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E

JTAG Connector

ST Connector @

(TTC)
(Not fitted in
diagram)

LEMO
Connector

MiniPOD Sockets (x8)

XILINX»
KINTEX.

XCKU115™

FLVF1924AAY1529
CF25117A
2

PCle x16 Gen 3

SO-DIMM Sockets
(Not used for FELIX)

12 V Power

(Not compatible
with Xilinx Power

& Connector)

110

The FELIX Firmware implements the interface for
the PCle, the interface for the transmitters and
receiver optical links, the routing of data, and
the clock and resets logic.

11/30/22

PCle Gen3 x8

Configuration registers: control and monitor.

Bu
External TTC board Y TTC fmc CLK&RST
Kintex UltraScale A wrapper
d U TTC mmcm
m, Busy data TTC firmware clocks*
ouse- H roc [
k > GBT link P A emu. DeCOdIS‘r * Exact output frequency
EEI')“"E data [ Y Y TTC depends on themmcm input.
emulator data Outputs are phase aligned to
v - = e 7 an input clock.
| A
- TTC data fan-out
from-Host ||
" path T ] Wupper core Wupp.er
*g | From-Host data DMA engine PCle engine
. encoding, parsingand_}.
S |GBTFPGA | |GBTInk " amemeson ] OV read
£ data ' L | xiLnx
8 wrapper I -
= emulator Central Router ~—J_ PCle
8 Y DMA control [H— End Point
= To-Host data decoding, data
= | |J boundaries detection,
_to-Host 1 Pheader and packet trailer : | DMA write Interrupt
path [ attachment controller
X GBT_NUM X GBT_NUM o .
|
| u 174 |
v
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Hardware Configuration

A second FELIX is connected to the first FELIX

through the optical transceivers, as a dedicated
FPGA hardware for smart control and real-time

decision-making for TPC readout in the selective

Al decisions ooyl

2
— x4
to TPC - Al Engine

Transceivers Kintex Ultrascale
x48

— . .
data streaming architecture.
Streaming Al
FELIX (FPGA)
Raw hits via Eﬂ: PEX8732
optical links i Em
Tt 4 Online Buffer
Kintex Ultrascale -
D = | [=
"ﬁ""' & Clock <_> CoMll 8
J_J ‘_h T
4'{:? .o,”s‘s?m vom swtcres
|T] — ADN2814 -
fouser 1O Busy (LEMO)

The Al Engine will search for displaced tracks to identify tracks from heavy quark decays that are pointing
away from the nominal beam center. Such a signal will initiate the readout of the TCP detector.

The firmware of the Al Engine will implement the Neural Network deployed using hls4ml, the PCle interface,
and the optical link interface.
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Schedule — completed

The Fermilab test stand has been
set up: the FELIX board BNL711 is
set up in a Host Computer.

On the Host Computer, the FELIX driver and the
software application is been installed.

The IP of the simple NN is in the integration
phase with the Wupper module (PCle engine)

Data
emulator Wu
- Wupper core ppe.r
. PCle engine
u DMA engine 00
x
< ] DMA read CILINX 99)
Simple ' S
P 01> PpcCle 8
NN DMA control End Point
Q
P O
| > DMA write Interrupt a-
controller

11/30/22 Fast-ML Status and Plan @DOE Presentations
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Schedule — next steps and challenges

Fit the NN in the FELIX Firmware complying with timing

Test the functionality of the NN _
constraints.

and the data routing mechanism

The workflow of hls4ml generates an IP considering available

APPLICATION the resources of the target FPGA. We n.eed to route the NN
considering the already routed FELIX Firmware.
OPERATING SYSTEM
FELIX DRIVER
Meeting the timing in this condition is the

FELIX HW & FW (BNL711) m—)

real challenge

The FELIX card is a data router. It needs an
application to be instructed on the data
movement.

The application relies on an OS and a driver
interfacing the FELIX card.

NEXT STEP: the integration of the IP of the simple NN is in
with the Wupper module (PCle engine)

* Inserting the NN in the FELIX Firmware will
change how the driver interfaces with the
card

The testing part right now relies on the
interplay of Hardware, Firmware, and
Software

‘ Interfacing the board to test the
NN is the other real challenge

11/30/22 Fast-ML Status and Plan @DOE Presentations
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GNN Implementation in his4ml|

First version of his4ml-based Graph encoder available

https://arxiv.org/pdf/2112.02048.pdf

< Training
"\ with
“r‘ PyTorch
[/ ,l Geometric | ™.,
A\ < his 4 ml
Vivado backend
Serialized PyG-to-HLS
model -5 model Project writer _
(model.pt file) corveren | il g
nnet_utils \
/ \ C synthesis,
o .o 2 imi Logi thesis,
Simplified Graph-based \9/ / Ol \ i
. strategy clone arrays
encoding to hls4ml-style

nterface & XILINX

Critical optimization needed in construction of Graph-based mapping
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https://arxiv.org/pdf/2112.02048.pdf

GNN Planned Upgrade in hls4m|

Latency II

Design (Mnodess Medges) RF Precision [cycles] [cycles] DSP [%] LUT [%] FF[%] BRAM [%]
Throughput-opt. (28, 56) 1 ap_fixed<14,7> 59 1 99.9 66.0 11.7 0.7
Throughput-opt. (28, 56) 8 ap_fixed<14,7> 75 8 21.9 23.8 4.7 0.7
Resource-opt. (28, 56) 1 ap._fixed<14,7> 79 28 56.6 17.6 39 13.1
Resource-opt. (448, 896) 1 ap_fixed<14,7>| 470 174 56.6 25.0 7.4 16.5
Resource-opt. (448, 896) 8 ap._fixed<14,7> 1590 520 5.6 25.0 7.4 16.3

@200 MHz, 1590 Cycles - 7.5us

Active work is underway to improve the GNN implementation
 Base implementation has been updated twice in 2022

» A third update will start in mid December, focusing on 3 examples
O Example 1: Tri-muon reconstruction with the LHC (muon endcaps)
O Example 2: Heavy flavor tracking at sSPHENIX
o Example 3: Silicon strip tracking at LHC
» Current Graph encoder to be optimized (adjacency matrix computation)
o Aiming to centrally rework this with core hls4ml developers
o Will be a central project across several domains
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Demonstrator
Implementation

- Jakub Kvapil
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Demonstrator Development @ LANL, ORNL and CCNU

Why a demonstrator: \//ANLS—etup/ ,

- SPHENIX technologies rapidly evolving at the | P 2%y ‘ i == |
time of proposal Y e Y 7 / :

1. sPHENIX DAQ will be ready in early 2023

» Parallelize development in early stage to be ready
for final deployment

2. Fabricate more FELIX boards later

» The Al core logic will be implemented on VC709
which is the FELIX protoboard (share similar
resources and is supported)
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Demonstrator Implementation

Work in Progress

4 A
sPHENIX raw data |

Simulation ponNE
\ %

e- L|nk,/PCIe

1 KC705
|
| (INTT)

Al FPGA
' g-Link | VC709

>

|
: Work in Progress
/

Both KC705 and VC709 will be replaced by FLX712 at deployment stage

11/30/22
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Beam vertex(x,y)
alignment,
calibration etc.

Fast HF
trigger output
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LANL

SPHENIX RAW Hit Data Simulation

- In order to test the full loop feedback Al system
"MVTXHits": [

detector hits must be known p
- Code developed to transform MC JSON hit patterns "Ip": {
into MVTX and INTT raw data streams niteequencenivant " .
"G4HitAssoc": [
20
32 I’eadOLlJt regions MVTX sensor ]
{16 double columns f'"'}["'ﬁ f'"} readout "MVTXTrkID": 31,
‘OoOfo oo o o "Layer": 0,
v [(hid D =-- i ! Gl bl " "
N L R R Stave": 1,
1O [EVACH VS "Chip": 6,
EDDDD DD: np- He DAQ
‘Hiaghl db P}xel_x - 1§u,
' Q0 OO - G0 "Pixal _z": J3
'Ojoojjo oo ! | , |
e o “i}; } .
~ 4 N "Coordinate": [
Region Readout (1) RR (2) || RR (3) RR (32) 1.7037016547341806
[128x24b DPRAM| 1 Q%;%ﬂ z’l%@ﬂ 75;9;’
s 2 4.7464902043342591
v
Readoqt Chip Data Formatting
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CCNU

KC705 MC Raw Data Transmission Demonstrated

Simulated data must be streamed to the Al/FPGA, VC709/FLX712
KC705 is used to read the MC data via PCI XDMA and transmit them using g-Links
One link for MVTX and one for INTT

Write address channel

Address
control

Write data channel

Master
interface

Write
data

Write
data

Write
data

Write
data

e S .

Wiite response channel

response

11/30/22

Slave
interface

Package ID

63:32

Head
31:0

O.
~

~ payload 1 payload 2 payload 3 payload n+2 payload 2416+1

One packet  PCle Width: 64bit
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FLX712 Raw MVTX Data Transmission to AI-FPGA ~ °™

: . Sl 2
o -1 | G | e

» timi 15 ' "']'L\ ol ! trigger clock & housekeeping configuration registers:
' -y process reset module control and monitor
i : :
1 1
1 up 1
1_x12 stream DCS |
! MUX logic [ ] :
< | GBT-FPGA LA :
H I wrapper . . 1
Rea d out U nit ! ‘E__> GBT input MVTX event Wupper Input Wupper Xilinx PCle ! PCle
gl buffer logic ) FIFO B DMA 4»| Gen3endpoint t bus
I g engine (x8 lanes) :
MiniPOD 1 1
Optical : ¥ !
modules 1 . :
| Logic i
Fiber | !
1 1
| | |
S: i Xilinx GTH !
succes e W .
v : :
FPGA h_____________________________________________________________EI;G:A____XE
GTH Wizard
with
Example Design for
monitoring . .
KCU105 * FELIX input: up to 24 GBT links at 3.2 Gbps payload rate

* MUKX Logic: multiple GBT packets into raw data packets with header

* GTH output: ~8 GTH wizard data streams (8b10b encoded) at up to 14 Gbps

* KCU105 simulates the Al/FPGA board that receives the GBT data and contains the Al engine
* Implemented GTH wizard example design to measure bit errors and verify received data
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Timeline and Outlook

2021 2022 2023 2024 2025 2030+
BN BN BN BN BN q
« Project « MVTX&INTT - Refineinterface - Deploy - Final design - Deploy
funded by SRO between system device at for EIC TDR device at
DOE FOA «  Fast tracking and detectors SPHENIX (CD3) EIC
- Dec. 2021 & trigger - Improve pp/pAurun - Take
(Lab) algorithms in algorithms with « EIC advantage of
- Jan. 2022 place latest data preliminary new
(Univ.) - Initial FPGA stream TDR (CD2) technology if
bitstream «  Pre- required
GPU feedback commissioning
machine R&D

Great progress, on track to succeed in 2023 Future plan, 2024+
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Backup slides
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sPHENIX and EIC Schedules

SsPHENIX Run Plan: 2023-2025

pp and pAu runin 2024

Year | Species ' VSNN ’ Cryo , Physics Rec. Lum. | Samp. Lum.
[GeV] | Weeks Weeks |z| <10 cm |z] <10 cm

2023 | Au+Au | 200 | 24 (28) | 9(13) 3.7(5.7)nb! 45(6.9) nb!

2024 | p'p 200 | 24(28) | 12(16) 0.3(04)pb ' [5kHz] | 45(62) pb~!

45 (6.2) pb~' [10%-str]
2024 | p'+Au | 200 - 5 0.003 pb~! [5 kHz] 0.11 pb~!
0.01 pb~" [10%-str]
| 2025 | Au+Au | 200 | 24 (28) | 20.5 (24.5) | 13 (15) nb ! 21 (25) nb™! |

11/30/22

EIC Project Plan (as of 11/05/2022)
. ePICTDR for CD2/CD3A, 2024

. Final design/construction, 2025

EIC Reference Schedule -

FYI9  FY20 FY2l FY22 FY23 FY24 | FY25 | FY26 REY275 BEY265H B

CD2WA | €D
Jan 2024 Apr 2085

CD-0(A)

Dec 2019

lllllllll

€D-I(A)
Jun 2021

V3

FY30  FY3l  FY32  FY33 | FY34
JCD4A CD-4¥
'Approve start. Approve ploj
of operations  completion
Apr 2022 Apr 2034

Conclusion of

eeeeeee

RHIC Operations

Early CD-4A Early CD-4
Completic

f =

F R
T : 7773
IIIIIIIIIIIII or : Fr7777) Full RF Power Buildout
s [ Leprocurement Fabrication, Installation & Test szt s 557 7s
I3 e 1
or P Fabricatioh, &Test |77, / 7
Accelerator [ 7/ Full RF Power Buildout
''''''''''''' 3 : g | (oo e V777777777
Detccor ——  pnesne V777
-

Data Level 0
Date Milestones

Critical
Path

([ Soningency
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EIC: ePIC DAM Candidates: ATLAS “FELIX”

MiniPOD Sockets (x8)

TTC Mezzanine JTAG Connector

LEMO Connector

12 V Power
(8-pin PCle
power

connector)

Kintex UltraScale XCKU115 FPGA
MTP 24 or 48 Coupler

PCle Gen 3 x 16

Current ATLAS Phase 1/ sPHENIX FELIX BNL-712v2

FELIX FLX-181 Prototype (BNL)

(Hao Xu, BNL, DAQ WG meeting 7/2021)

Current Design of FELIX FLX-182

FLX-182

L T I
: frar. .,._'. r— | | i-dl;:n
- =) ¥ i - =
| ¥ v srarme i
G — | 1 l Py i T
o i3 0me
WERILSM -I """,::""m:'c:" I-l « - |
g%' - " hg—T - =
— —l_: Hlinx
TERHE ] fersal FP
;‘ 2 - a ke ST [#= I'.E"S-al m hrl.“ Lo T
£ aTETION I_" e — Seaw
& H POLMAT | " | | 4-| kg
' — —t—t— " . B
WY =
s
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FELIX Status

FLX-182 Status

Design passed FELIX review, will be sent out for fabrication in this week
First assembled board is expected to be delivered in early September 2022
7 boards will be produced if there’s no big design issues, by December 2022
Small production for more boards is possible once FPGA is available

Plan for 48-ch FELIX

FPGA: Versal Premium, e.g. VP1552
Transceivers: Up to 100+ GTYP/GTM
PCle Gen 5 up to 16 lanes

Architecture and Interfaces

PCle Gen 4 x 16 lanes

Transceiver
Transceiver Type: Samtec FireFly transceiver
Transceiver Speed: up to 10 Gb/s ("CERN-B") or 25 Gb/s

e Number of Optical Connectors per Card
At least 24 bi-directional connections to front-end electronics
A separate bi-directional connection to the TTC/BUSY system

e Configuration

Boot from JTAG/QSPI/SD card
Remote FPGA configuration from Multiple Flash Partitions

DDR4/Flash Memory/SD card
12C

External Electrical Interface
Voltage Protection
Temperature Protection

If FPGA is available as planned, design will start in Q1 of 2023, first board is expected to be

available in Q3 2023.
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