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PROJECT PURPOSE AND GOALS
The purpose of this project is to develop automated decision-support tools to

assist physicists in the analysis of complex experimental data taken with the large

gamma-ray spectrometers such Gammasphere, GRETINA and AGATA.

Specifically, we are working on three closely related areas in which modern

optimization models and tools together with machine-learning approaches will be

deployed to provide an automated data-analysis workflow for these types of

experiments, namely:

• Develop data preparation and workflow tools to quickly extract the required 

information from the gamma-ray data collected by the devices.

• Develop machine-learning tools to improve γ-ray tracking 

• Develop machine-learning tools to assist in the construction of complicated level 

schemes using γ-γ and γ-γ-γ coincidence data.
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PROJECT OUTLINE

▪ Develop new methods to improve on 

current gamma-ray tracking 

algorithms to increase both photopeak 

intensity and background rejection.

▪ Develop machine learning tools to 

improve on these methods.

▪ Extend these methods to include pair 

production events.

▪ Incorporate these tools into tracking 

codes used by the community.

Machine-Learning (ML) tools for Gamma-Ray Analysis
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▪ Develop tools to automatically extract 

intensity information from gamma-ray 

coincidence data.

▪ Using known level schemes, develop 

a mathematical toolkit to build levels 

schemes from the inputted data for 

both 2-fold and 3-fold coincidence 

information.

▪ Apply toolkit to both simulated data 

and experimental data taken with 

Gammasphere and GRETINA.

Gamma-ray Tracking Level Scheme Construction
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ML TOOLS FOR GAMMA-RAY TRACKING



γ-RAY TRACKING PROBLEM

  

           

Photoelectric          Compton Scattering           Pair Production

  Isolated hits            Angle/Energy             Pattern of hits      

   

Probability of
Interaction depth

~ 100 keV                   ~1 MeV    ~10 MeV     γ-ray energy

Overview of the problem
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Three operations

• Doppler correction

• Linear polarization



TRACKING PROBLEM: GOALS & CHALLENGES

▪ Goals:
1. Find distinct γ-rays (cluster)

2. Recreate Compton suppression using FOM

Using detector information to reconstruct and categorize γ-rays
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▪ Challenges:
1. γ-rays too close

2. γ-ray escape

3. γ-rays crossing 

the detector

4. Suppress 

environmental 

γ-rays



ML TOOLS FOR GAMMA-RAY TRACKING
Where ML and data science techniques apply to this problem
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Cluster 
interactions into 
separate γ-rays

Order 
interactions for 

individual γ-rays

Suppress γ-rays 
scattering out of 

the detector

• Energy clustering

• ML clustering

• GNN clustering

• Choice of FOM

• Combined 

clustering/ordering

• Choice of FOM

• ML classification

• Recover γ-ray energies

(red text indicates future plans)



▪ Use spectrum to guide clustering

– Avoids confusing geometries

▪ Find interactions with total energy in 

peaks using a fast MILP solver

▪ Solve “too big” / “too small” clusters

▪ Slightly increases P/T and efficiency by 

capturing more peak energy γ-rays

▪ Does not create any additional Compton 

suppression

Energy information separates close clusters
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RECREATING COMPTON SUPPRESSION 

▪ Previously done with BGO absorber

▪ FOM correctly orders < 50% of escapes

– Wrong order favorable over truth

– Suppression suffers

▪ Using escape energy estimate improves 

suppression (Tashenov & Gerl 2010)

– Order for escapes is essential for 

suppression

▪ ML can further improve ordering & 

suppression

Correctly ordering escaped γ-rays improves suppression
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IMPROVING WITH ML

▪ Use simulated data:

– True order is known

– Escapes are known

▪ Ordering considerations:

– Speed, up to 𝒪(𝑛!)
– Absolute FOM value is not 

important, only relative

▪ ML Escape classification

– Assume clustered

▪ Challenging to transfer model 

to experimental data

ML tools for ordering & classifying 

11

Multiplicity

30 data

GRETINA

FOM

GRETINA

Escape

AGATA 

FOM

ML 

FOM

Complete γ 73.8% 73.4% 87.0% 81.4%

Escape γ 46.7% 58.0% 76.2% 77.5%

Total 67.0% 69.5% 85.2% 80.4%

Ordering Consistency

Without single interactions
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ML CLUSTERING

▪ GRETINA clustering is done 

spatially with respect to cluster 

spread (scattering forward)

▪ Use ML to create an alternate 

distance metric by which to 

cluster

– Learned from data

– Include additional clustering 

steps beyond singles

– Include cluster order

Clustering beyond GRETINA without knowledge of spectrum
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ML Estimate Ground Truth GRETINA (𝛼 < 40°)



FUTURE WORK AND EXTENSIONS

▪ Improved recovery of escape 

energies instead of suppression

▪ ML tools for fast tracking

▪ ML training using experimental data 

from sources

▪ ML tools for on-line learning

▪ Optimization based approaches for 

better clustering

▪ Apply techniques to the problem of 

pair production

Improving the resolving power of GRETINA for further analysis
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ML TOOLS FOR LEVEL-SCHEME DESIGN



MAPPING OF EXCITED STATES IN NUCLEI
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• A major deliverable from large g-ray 

arrays is the mapping of excited 

nuclear states. 

• Accomplished by analysis of g-ray 

coincidence data e.g. 2-fold, 3-fold, …

• Level schemes can be complicated, 

and analysis times can take many 

months.

• Can we develop tools to speed up 

analysis and quantify accuracy?

Building level schemes from data collected from the large gamma-ray arrays

[Kondev 2012]



ML TOOLS FOR LEVEL-SCHEME DESIGN

Single, 
Doublet, or 
Triplet Data

Optimize 
Transitions

Represent as 
Level-Scheme

Overview of Inverse Optimization Approach
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• Data preparation

• Extraction tools for 

coincidence data

• Inverse optimization to 

determine transitions

• ML-based optimizers

• Graph-based level-

scheme generation

• ML-based extensions



MATHEMATICAL FORMULATION

▪ Start with data from Gamma-Sphere experiment:

– S: γ-ray transitions & intensities (as diagonal matrix)

– C: γ-γ coincidence data

▪ Determine the outputs:

▪ A: the matrix of branching ratios

▪ D: the directed coincidence data

▪ Following Demand (2013), we try to satisfy two equations simultaneously:

D = S( ( I – A )-1 – I) and C = D + DT

Writing Level Scheme Construction as Matrix Equations
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ML TOOLS FOR LEVEL-SCHEME DESIGN

▪ Goal: Given S, C, find A, D such that

D = S( ( I – A )-1 – I) and C = D + DT

▪ Formulate nonlinear constrained optimization problem:

Inverse Optimization to Determine Transitions
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Enforce constraints 

such as conservation 

of energy, nonnegative 

decay intensities etc



ML TOOLS FOR LEVEL-SCHEME DESIGN

▪ Inverse optimization for transitions A

▪ Use nonlinear optimization methods

… solves within minutes on laptop

▪ Extends to γ-γ-γ-interactions (tensors)

▪ Progress so Far:

– Implemented inverse optimization in AMPL & solve model using IPOPT

– Successful proof-of-concept: 

(1) Generate data (S,C) from given level-scheme (python code)

(2) Solve inverse optimization for A (AMPL/IPOPT)

(3) Create level-scheme & compare to original scheme

Optimization Techniques
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LEVEL SCHEME RECONSTRUCTION

▪ Inverse optimization results in two matrices:

▪ A: the matrix of branching ratios between subsequent γ-rays

▪ D: the directed coincidence data

▪ Final Step: Create energy level scheme from matrix output

Actionable Physics from Output Matrices
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ML TOOLS FOR LEVEL-SCHEME DESIGN
Level-Scheme Representation from Transition Matrix
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ML TOOLS FOR LEVEL-SCHEME DESIGN
Level-Scheme Representation from Transition Matrix
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4945

8337

4150

*Adjacent transition



ML TOOLS FOR LEVEL-SCHEME DESIGN
Level-Scheme Representation from Transition Matrix
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FUTURE WORK AND EXTENSIONS

▪ Develop tools to automatically extract γ-ray intensity information for 2- and 3-fold 

coincidence data.

▪ Handling of uncertainty/noise with level-scheme construction for robust results

▪ Level scheme from γ-γ-γ interactions

▪ Fast ML-inspired algorithms (ADMM) for level-scheme construction

▪ Apply algorithms to both simulated data and experimental data where gamma-

ray intensities have been extracted with developed tools.
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BUDGET TABLE AND 

TABLE OF DELIVERABLES AND SCHEDULE



BUDGET TABLE

FY21 ($k) FY22 ($k) Total ($k)

a) Funds allocated 500 500 1000

b) Actual costs to date 310 (FY22) 40 (FY23) 350

Summary of expenditures by fiscal year (FY):
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MAJOR DELIVERABLES AND SCHEDULE

Area Project Deliverable Timeline

γ-Ray-Tracking ML for Tracking Python code Mar 23

Level-Scheme (2D) Inverse Optimal Design Python code May 23

γ-Ray-Tracking ML for Tracking Journal paper Feb 23

Level-Scheme (2D) Optimal Level-Scheme Journal paper Apr 23

γ-Ray-Tracking Pair Production Python code Oct 23

Level-Scheme (3D) ML Solver & Construction Python code Oct 23

ML Tools for Gamma-Ray Tracing and Level-Scheme Construction
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MODERN ML & OPTIMIZATION TOOLS FOR 

TRACKING AND LEVEL-SCHEME DESIGN


