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High-level description of what we want to do:

Detector Model
parameters of interest 6

Goal: find best @ given a metric(s).

Today: can we use ML to (1) interpolate in the
high-dimensional space, (2) define optimal
metrics, and (3) find the best values of 0.



Traditional approach to evaluate detector designs
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- Small number of detector setups are considered, and the reconstruction

algorithm is not optimized for a given detector setup.

- Not amenable to gradient-based optimization




The backbone of detector design
“Geant4 is a toolkit for the simulation of the passage of particles
through matter”

& GEANT4

A SIMULATION TOOLKIT

Geant4

Used in many fields: particle
Overview and nuclear, space, medical

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and .
accelerator physics, as well as studies in medical and space science. The three main reference papers for Geant4 are published in Nuclear p h t
SICS, elC.

and Nuclear Instruments and Methods in Physics Research A 835 (2016) 186-22507 .

Applications User Support Publications

A sampling of applications, Getting started, guides Validation of Geantd4, Who we are:
technology transfer and and information for results from experiments collaborating institutions,
other uses of Geant4 users and developers and publications members,

organization and legal
information



Issues with Geant4 simulations that create bottlenecks
for automated detector design

Computationally expensive.
(bottleneck for collider experiments
simulations, especially that of
particle calorimeters)

Not amenable to automated
optimization

(uses a stochastic model of
Detector response)

Example of simulation of a particle shower
developing in a calorimeter. Source: Geant4



Our DNN-based approach (Co-design)
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Amenable to automated optimization

(e.g gradient-based optimization)




Traditional vs DNN-based approach
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We need to
swap Geant4 for
DNN-surrogate,
and
reconstruction
algorithm must
be DNN-based,
so the entire
chain is
differentiable
with respect to
detector
parameters



Our proposed solution:

‘to use deep neural networks (DNNs) to transform Geant4
simulations into differentiable models, which will make
gradient-based optimization possible”
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“Co-design”

hardw'are software

Generative model Reconstruction
This block can be

= N N N \ -
% % % % % > thought of as a single

network

- Overall optimization will achieve “codesign” in the sense that the reconstruction algorithm
will be optimal for a given detector

- Codesign is a common concept in many fields, but was never used in particle or nuclear
physics before.
The advent of EIC detectors is a perfect opportunity to pursue this.



.................................................

Al / ML can do more than - e ——— i s

Improve data analysis! B MEN R b M e s g

We can use these tools
to optimize our detectors
- a qualitatively new
application of ML!
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How do we achieve this?
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GEANT
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103 _  Five randomly selected photon showers in
¢ two calorimeter
‘é layers from Geant4 (top rows) and their five
> 10' ¢ nearest neighbors from a set of CaloGAN
%) 0™ candidates.
Figure source: M. Paganini, L. Oliveira, B.Nachman,

Phys. Rev. Lett. 120 (2018) 4, 042003.
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Although CaloGAN is not
the only approach possible,
nowadays there are various
competing approaches:

Learn a differentiable

surrogate
5!; GANS
= 'b
noise {real,fake}
Geant4 =——p

I Goodfellow et al.
NeurlPS 2014

Variational Autoencoders

—" p(zlx) Iatent p(x|z) e—

Geant4 Space D. Kingma &
M. Welling, ICLR 2014

Normalizing Flows

- Invertible transformations
5 4P

S, :

Sy,

Analytic D. Rezende and S.
Density Mohamed, ICML 2015

Geant4
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How do we achieve this?
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Reconstruction based on DNN

i i
f doing gradient-based E : s Z%:V;
optimization, the target also =™ '
needs to be differentiable. For Tl A F——
example, target could be : % Shedlicremein
resolution of some o N
reconstructed object. This il
could itself be a neural network!
00—ty i " s
True Cluster Energy [GeV]
State of the art work, led by members of our @ ATLAS PUB Note
team (Angerami, Nachman) L ATL-PHYS-PUB-2022-040

EXPERIMENT 17



Innnovation

Detector Description

Generative model Reconstruction

Input from event . \ —»| Performance metric
generator , )
) 7 A
AW\

A4
Y

e Generative models through surrogate is well established (although not
conditional on detector parameters)
e Reconstruction with DNN is well established

But nobody had merged the two and used it in an optimization setting



Case study: Calorimeters for Electron-lon Collider

Chosen because :
- Maximal impact (calorimeter is the bottleneck for Geant4 simulations)

- Clear need for optimization in high-dimensional space (granularity to be defined),
- Domain knowledge within team (active involvement of UCR in EIC R&D, previous work
by LLNL & LBNL team in using Al techniques for ATLAS heavy ions )

p/A beam electron beam
= B

~— PCB
with
SiPMs
T\ scintillator

“—— ESR foils

o

cover

. S 16mm thungsten plates
4 mm scintillator tiles

16mm steel plates

Central
Detector

20cm

120cm 8M tower module - 20 cm x 10 cm x 150 cm
-8 5cm x5 cm LFHCal towers 1 9

arXiv:2207.09437



Some of the key questions that our Al-driven
optimization approach could answer are

- Given a certain budget, what is the optimal
performance one can get and how it depends on
number of readout layers?

- For which angles would a high-segmentation
have the largest impact?

- Where should be the longitudinal layers be
placed?

PR P

In addition to an optimal detector configuration, our approach also
provides the model gradient, which will gives us quantitative insights for
decision making
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Timetable of Activities

Tasks and Deliverables

T1: Implement G4 model of realistic calorimeter and develop
training framework

T2: Setup full learning pipeline using simplified setup
D1: Write methods paper

T3: Apply pipeline to EIC G4 simulation

T4: Complete full detector/reconstruction codesign
D2: Write optimization paper

D3: Deliver DNN fast sim and event reconstruction tools to EIC
community

FY22

FY23
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Test-beam data of iron-scintillator calorimeters
0.30 l l -.-IWA1 (1980)I ']

- CDF (1997) ]
& COMPASS (1997)
£ ATLAS (2009) _
& CALICE (2012) 1
45 SPHENIX (2018) 1

STAR (2019) -
45 EIC ref. detector in DD4HEP |

Pipeline building

- Geant4 models for
simulations implemented with

0.10F

. o.osf— —

full detail. : f

. 0.00——rrrrl

- Data generation @ LLNL P energylcev]
QA code, etc. HCAL Hits HCAL Hits

- Simulations validated against
real data using “strawman”
(non-Al) methods to avoid
GIGO in our Al approaches.
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Pipeline building, continuation

Large-scale generation of Geant4
simulation for Al models trained
achieved using HPC clusters at LLNL

Training of Al models for reconstruction
using HPC using distributing GPU is
working.

Have completed DNN-based workflow
and are starting GNN one

HCal Sum Energy
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Our Al work motivated us to explore the potential of
“imaging calorimetry” @EIC

Shower-shape examples. Highly-granular 5D hits
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Technology can yields 5D (energy, time, space) information — Optimal for Al

Flexible technology, requires non-trivial optimization, and challenging reconstruction that
calls for Al-based methods and design.

Conceptual design submitted this year to NIMA, optimization paper with methods
developed in this project to be published separately 24



https://arxiv.org/abs/2208.05472

Computer resources

We are using LLNL HPC resources such as Borax and Lessen at LLNL.
New collaboration between LLNL and UC Riverside.

A total of 5 students and 1 postdoc from UCR are involved and learnt how to use
these for large-scale data generation as well as machine-learning model training.

M Lawrence Livermore
—4 National Laboratory

25



Exchange between UC Riverside and National Labs

2 UCR graduate students traveled to Berkeley this summer.
Next summer, we plan the same for Livermore.

2 undergraduate students are being paid as research assistants (not
just over summer)

Dual goal is also to expose students to broad applications of Al
methods at LBNL and LLNL

26



Team & budget

[T RIVERSIDE BB ...cxcec cno

lable 2. Key team members and their relevant expertise for this project.

'l Lawrence Livermore
National Laboratory

Team Member Expertise Contribution to Project
Ben Nachman (LBNL) ML/jets 0.10
Aaron Angerami (LLNL) ML/jets 0.10
Miguel Arratia (UCR) Jets/EIC 0.10
FY21 ($k) FY22 (Sk) Totals (k)
Ken Barish (UCR) Cold QCD/Calorimetry/EIC 0.10
Computer Scientist (LBNL) Data/Computer Science 0.15 a) Funds allocated 490 490 980
Piyush Karande (LLNL) Data/Computer Science 0.15
b) Actual costs to date
Postdoc (LBNL) ML/jets 0.50 325
Postdoc (LLNL) ML/jets 0.50
Postdoc (UCR) ML/jets 0.50
Graduate Student (UCR) Training for ML 0.50
Graduate Student (UCR) Training for ML 0.50

Postdocs: Fernando Torales-Acosta (LBNL), Dongwi Handiipondola Dongwi (LLNL), Vishnu Karki (UCR);
Grad students: Sebastian Moran (UCR), Liam Blanchard (UCR) 27



Optimizing detector design with DNNs

Overarching goal: provide first-ever detector design optimized with DNNs

Key deliverables

- Aframework applicable for any future experiment that rely on Geant4
simulations (the backbone for detector designs in many fields)

- High-fidelity DNN-based fast simulator for EIC

- DNN-based reconstruction software for EIC

28



Summary

e Overarching goal: provide first-ever detector design optimized with DNNs

Building on recent advances in Al/ML on generative models and reconstruction
which have been pioneered by members of our team.

® New collaboration between

Al/ML experts and EIC detector experts
Between LLNL, LBNL and UC Riverside

Project aims to influence EIC detector design and cement use of Al/ML
methods on EIC at an early stage.
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