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High-level description of what we want to do:
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Traditional approach to evaluate detector designs

- Small number of detector setups are considered, and the reconstruction 
algorithm is not optimized for a given detector setup.

- Not amenable to gradient-based optimization 3



The backbone of detector design
“Geant4 is a toolkit for the simulation of the passage of particles 
through matter”

Used in many fields: particle 
and nuclear, space, medical 
physics, etc.
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Issues with Geant4 simulations that create bottlenecks 
for automated detector design

● Computationally expensive.
(bottleneck for collider experiments 
simulations, especially that of 
particle calorimeters)

● Not amenable to automated 
optimization
(uses a stochastic model of 
Detector response)
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Example of simulation of a particle shower 
developing in a calorimeter. Source: Geant4



Our DNN-based approach (Co-design)

Amenable to automated optimization 
(e.g gradient-based optimization) 6



Traditional vs DNN-based approach
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- We need to 
swap Geant4 for 
DNN-surrogate, 
and 
reconstruction 
algorithm must 
be DNN-based, 
so the entire 
chain is 
differentiable 
with respect to 
detector 
parameters



Our proposed solution:

“to use deep neural networks (DNNs) to transform Geant4 
simulations into differentiable models, which will make 
gradient-based optimization possible”
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Not just optimal 
solution but also 
model gradient!



“Co-design”

- Overall optimization will achieve “codesign” in the sense that the reconstruction algorithm 
will be optimal for a given detector 

- Codesign is a common concept in many fields, but was never used in particle or nuclear 
physics before. 
The advent of EIC detectors is a perfect opportunity to pursue this. 

9

hardware

This block can be 
thought of as a single 
network

software
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How do we achieve this?
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Five randomly selected photon showers in 
two calorimeter
layers from Geant4 (top rows) and their five 
nearest neighbors from a set of CaloGAN 
candidates. 
Figure source: M. Paganini, L. Oliveira, B.Nachman, 
Phys. Rev. Lett. 120 (2018) 4, 042003.
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Although CaloGAN is not 
the only approach possible, 
nowadays there are various 
competing approaches:
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How do we achieve this?
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Reconstruction based on DNN

State of the art work, led by members of our 
team (Angerami, Nachman)



Innnovation
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● Generative models through surrogate is well established (although not 
conditional on detector parameters)

● Reconstruction with DNN is well established

But nobody had merged the two and used it in an optimization setting



Case study: Calorimeters for Electron-Ion Collider
Chosen because :
- Maximal impact (calorimeter is the bottleneck for Geant4 simulations)
- Clear need for optimization in high-dimensional space (granularity to be defined),
- Domain knowledge within team (active involvement of UCR in EIC R&D, previous work 
by LLNL & LBNL team  in using AI techniques for ATLAS heavy ions )
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Some of the key questions that our AI-driven 
optimization approach could answer are

- Given a certain budget, what is the optimal 
performance one can get and how it depends on 
number of readout layers?

- For which angles would a high-segmentation 
have the largest impact?

- Where should be the longitudinal layers be 
placed?
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In addition to an optimal detector configuration, our approach also 
provides the model gradient, which will gives us quantitative insights for 
decision making
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Pipeline building

- Geant4 models for 
simulations implemented with 
full detail. 

- Data generation @ LLNL 
QA code, etc. 

- Simulations validated against 
real data using “strawman” 
(non-AI) methods to avoid 
GIGO in our AI approaches. 
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Pipeline building, continuation

- Large-scale generation of Geant4 
simulation for AI models trained 
achieved using HPC clusters at LLNL

- Training of AI models for reconstruction 
using HPC using distributing GPU is 
working. 
Have completed DNN-based workflow 
and are starting GNN one
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Our AI work motivated us to explore the potential of 
“imaging calorimetry” @EIC
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- Technology can yields 5D (energy, time, space) information → Optimal for AI 
- Flexible technology, requires non-trivial optimization, and challenging reconstruction that 

calls for AI-based methods and design. 
- Conceptual design submitted this year to NIMA, optimization paper with methods 

developed in this project to be published separately

Shower-shape examples. Highly-granular 5D hits

https://arxiv.org/abs/2208.05472


Computer resources

We are using LLNL HPC resources such as Borax and Lessen at LLNL. 

New collaboration between LLNL and UC Riverside. 

A total of 5 students and 1 postdoc from UCR are involved and learnt how to use 
these for large-scale data generation as well as machine-learning model training. 
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Exchange between UC Riverside and National Labs

2 UCR graduate students traveled to Berkeley this summer.

Next summer, we plan the same for Livermore. 

2 undergraduate students are being paid as research assistants (not 
just over summer) 

Dual goal is also to expose students to broad applications of AI 
methods at LBNL and LLNL
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Team & budget
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490 490 980

325

Postdocs: Fernando Torales-Acosta (LBNL), Dongwi Handiipondola Dongwi (LLNL), Vishnu Karki (UCR); 
Grad students: Sebastian Moran (UCR) , Liam Blanchard (UCR)



Optimizing detector design with DNNs

Overarching goal: provide first-ever detector design optimized with DNNs

Key deliverables

- A framework applicable for any future experiment that rely on Geant4 
simulations (the backbone for detector designs in many fields)

- High-fidelity DNN-based fast simulator for EIC
- DNN-based reconstruction software for EIC
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Summary

● Overarching goal: provide first-ever detector design optimized with DNNs

Building on recent advances in AI/ML on generative models and reconstruction
which have been pioneered by members of our team. 

● New collaboration between 
AI/ML experts and EIC detector experts
Between LLNL, LBNL and UC Riverside

Project aims to influence EIC detector design and cement use of AI/ML 
methods on EIC at an early stage. 
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