Strained Superlattice photocathodes with CBE

Annual NP Accelerator R&D PI Exchange meeting

Marcy Stutzman, Jefferson Lab Chris Palmstrøm and Aaron Engel, UCSB

Motivation

Polarized electron accelerators use strained superlattice GaAs structures to emit polarized electrons.

Innovation through SBIR program

- SVT SBIR Partnerships with SLAC or JLab for high polarization photocathodes:
 - Phase 1: 2001, 2005, 2007, 2012, 2013
 - Phase II: 2002, 2008, 2013, 2014
- Various Superlattice Structures
 - GaAs/GaAsP
 - GaAsSb
 - AlGaAs/GaAs
 - Distributed Bragg Reflector

Variations

- Quantum Well thickness
- Barrier thickness
- Dopant concentration
- Number of periods

No longer available

Jefferson Lab 3

QE (%

Efforts to restore supply

- DOE Funding Opportunity 20-2310
 - MOCVD (metal organic chemical vapor deposition)
 - JLab: M. Poelker and M. Stutzman
 - BNL: E. Wang
 - ODU: S. Marsillac, B. Belfore
 - CBE (Chemical Beam Epitaxy)
 - JLab: M. Stutzman
 - UCSB: C. Palmstrøm, A. Engel
- MBE SSL GaAs/GaAsP Distributed Bragg Reflector
 - Sandia National Lab: Center for Integrated Nanotechnology
 - BNL: L. Cultrera
- Acken Optoelectronics Ltd., Suzhou China
 - Yiqiao Chen, formerly of SVT Associates
 - SSL GaAs/GaAsP photocathodes on order for evaluation

MBE, GSMBE, CBE and MOCVD

MBE

Gas Source Molecular Beam Epitaxy

elemental As, P, Ga

- Pressure ~10⁻⁸
 mbar
- Growth rates
 ~ 1 µm/hr
- Very precise control

Molecular beams

Marcy Stutzman 29 Nov 2022 DOE PI Exchange Meeting

GSMBE

Gas Source Molecular Beam Epitaxy

AsH₃, PH₃, elemental Gallium

CBE

Chemical Beam Epitaxy

AsH₃, PH₃, triethyl gallium (TEGa) or elemental Gallium

Pressure <10⁻⁴
 mbar

Molecular

and gas sources

 Growth rates 0.5-1 µm/hr

MOCVD

Metal organic chemical vapor deposition

AsH₃, PH₃, trimethylgallium (TMGa)

- Pressures >100 mbar during growth
- Growth Rates 10 µm/hr
- Traditionally difficult to get sharp interfaces

Gas sources

Photocathode Growth at UCSB

U California Santa Barbara

Semiconductor Deposition System

- CBE and MBE growth
- ARPES, XPS, STM, LEED, Auger analysis
- Half-metal Heusler Alloys – potential 100% photocathode
- Collaborators for growing GaAs/GaAsP SSL

Figure 2 Semiconductor deposition system at Chris Palmstrom's lab at UCSB. The CBE system for the growth of this material is shown at the back and labelled "VG V80H III-V CBE".

UCSB

- Calibrate GaAs/GaAsP superlattice layer growth
- Develop graded layer process
- Characterize samples with surface and crystal analysis
- Grow strained superlattice material

Jefferson Lab

- Replace depleted microMott detectors
- Upgrade microMott polarimeter
- Measure samples for QE and polarization when they arrive
- Train students on polarization measurement

Budget Shortfalls & delays + COVID = modified scope

	Proposal		Actual			
	2020	2021	2020	2021		
UCSB	\$150,000	\$150,000	\$0	\$150,000		
JLab	\$126,200	\$127,137	\$126,200	\$126,200		
	\$276,200	\$277,137	\$126,200	\$276,200		
	Total	\$553,337		\$402,400		

UCSB and JLab contract: Funding began February 2021 (4 month delay)

Tasks and timeline

	FY21 Q2	FY21 Q3	FY21 Q4	FY22 Q1	FY22 Q2	FY22 Q3	FY22 Q4	FY23 Q1	FY23 extension
JLab									
MicroMott: maintainance, repair	\checkmark						\checkmark	\checkmark	
MicroMott upgrade: Design, build									
Test Superlattices								\checkmark	
Train UCSB Student: MicroMott									
UCSB									
Graded layer		\checkmark							
Superlattice depo. calibration	\checkmark								
Chamber maintenance			\checkmark	\checkmark	\checkmark				
Research – AlGaAs/InAlGaAs				\checkmark	\checkmark				
Grow & Deliver AlGaAs/InAlGaAs						\checkmark			
Grow superlattice variations						\checkmark	\checkmark	\checkmark	
GaAs/GaAsP								?	?

UCSB proposed

- Calibrate GaAs/GaAsP superlattice layer growth
- Develop graded layer process
- Characterize samples with surface and crystal analysis
- Grow & deliver strained superlattice material

UCSB delivered

- ✓ GaAsP/GaAs superlattice growth calibration
- ✓ Graded layer GaAs to GaAsP
- ✓ Characterize superlattices
- Find triethyl-gallium and P make high vapor pressure residue -> solid source Ga
 - ✓ Chamber maintenance
- □ Research prior work
 - ✓ InGaAs/InAlGaAs has good QE, Pol. & better growth compatibility
- ✓ Grow InGaAs/InAlGaAs samples with variations in temperature, thickness, composition

Jefferson Lab Proposed

- Replace depleted microMott detectors
- Upgrade microMott polarimeter

- Measure samples for QE and polarization when they arrive
- Train student on polarization measurement

Jefferson Lab actual

- ✓ Detectors replaced
- ✓ Find wiring shorts, repair
 - No polarimeter upgrade design or build
- Measured QE and polarization of samples
 - First sample done
 - Five samples ready to test
- Student travel delayed

UCSB Highlights

Jefferson Lab 12

UCSB Highlights: Graded layer GaAs to GaAsP

X-ray Reciprocal space mapping

- -Plot of lattice distance during growth
- -Graded Layer with minimal strain
- -GaAs layer (5-10 nm) strained: lattice constant that of GaAsP

Downsides of GaAs/GaAsP

- Relaxed GaAsP virtual substrate grown on GaAs
 - Many threading dislocations
- As:P ratio in barrier is fixed by virtual substrate composition

Graded GaAs(1-x)P(x)

GaAs buffer o-GaAs substrate

GaAs(.68)P(.32)

 Strain and valance band offset in GaAs well layer are both fixed by virtual substrate

Band gap and Lattice Constant diagram

III-IV semiconductor alloys: Band gaps and lattice constants

Jefferson Lab 15

Downsides of GaAs/GaAsP

- Relaxed GaAsP virtual substrate grown on GaAs
 - Many threading dislocations
- As:P ratio in barrier is fixed by virtual substrate composition

Graded GaAs(1-x)P(x)

GaAs buffer

o-GaAs substrate

GaAs(.68)P(.32)

 Strain and valance band offset in GaAs well layer are both fixed by virtual substrate

Jefferson Lab 16

Benefits of InAlGaAs/AlGaAs

Heavily Doped GaAs InAlGaAs/AlGaAs superlattice

AlGaAs buffer

GaAs substrate

- No virtual substrate necessary
 - AlGaAs almost perfectly lattice matched to GaAs: Grow directly on GaAs
 - No lateral undulations from virtual substrate
- Easier to buy commercially than phosphides
- Potentially sharper interfaces due to same Group V sublattice
- Easily tunable DBRs
 - AIAs/AIGaAs for DBR
 - well characterized optical constants
 - abrupt interfaces

Benefits of InAlGaAs/AlGaAs

AlGaAs buffer

AlGaAs substrate

- Wavelength tuning
 Vary Ratio of Al in
 - superlattice layers
 - Tunes emission wavelength independent of strain
 - Tunes valance band and conduction band offsets

Jefferson Lab 18

InAIGaAs/AIGaAs: Potential downside

- Quaternary well (InAIGaAs) adds random alloy disorder, could increase bandwidth and thus hole overlap
 - Would decrease spin polarization
 - Potentially solved by digital alloy rather than analog alloy
- Initial QE measurements show double step in QE: hole overlap is not a limiting factor

Based on Mamaev et al., Appl. Phys. Lett. 93, 081114 (2008) and https://www.slac.stanford.edu/pubs/slacpubs/11250/slac-pub-11403.pdf

UCSB highlights

X-ray diffraction measurement of Superlattice

- Fully strained
- Superlattice period good 8% less than goal

Atomic Force Microscope surface morphology

- Verification of arsenic cap coverage
- Some excess As will desorb in first heat cycle

JLab Highlights

- CEM detectors replaced
- Troubleshooting
 - Lens slippage, realignment
 - Shorted HV wire for detector
 - Bad QE and lifetime: 3x bad leak valves
 - Crossed wires repaired
- De-scoped
 - Upgrade to puck system
 - Rotation to horizontal configuration
 - Designer time not available
- System working as of October 2022

JLab Highlights

Next Samples to measure

- Varied growth temp: Samples 198, 199
- Increase strain: Sample 144
- Higher dopant top & band gap shift: Sample 143
- Digital alloy barrier layer: Sample 202

UCSB: Successful DBR Structures

Distributed Bragg Reflector

- Enhance QE by reflecting light for several passes through SSL
- Designed for peak reflectivity at 770 nm
- Analog and Digital AIAs/AIGaAs DBR structures designed and tested
- Digital Alloy: better uniformity across wafer

UCSB: Digital vs. Analog DBR first results

- Digital alloy
 - potentially higher uniformity across wafer
 - GaAs Absorption in the digital alloy
 - Not viable structure
- Analog alloy
 - Peak reflectivity varies by ~30 nm across sample (¼ of 2" wafer)
 - Needs improvement,
 - rotation while growing will help
 - More periods will improve
 - Average reflectivity peak 20 nm from design
 - Structure can be designed to meet requirements (another benefit of AIAs/AIGaAs)

Next samples

- Add DBR to photocathode
- Optimize photocathode structure
- Digital alloy well and/or barrier in SSL could reduce the random alloy disorder, increase splitting

	FY20 (\$k)	FY21 (\$k)	Totals (\$k)
a) Funds Allocated	126.2	276.2	402.4
b) Actual Costs to date	126.2	130.3	229.5

~4 month delay starting project

Extension through December 31, 2022: Student funding

Plan to seek further extension

- Funding for student and equipment fees at UCSB
- Travel for student to JLab
- Further testing of superlattice samples

Project Summary

JLab: microMott polarimeter fixed & working

- First UCSB sample tested

UCSB

- Initial GaAs/GaAsP growth characterized
 - Extensive chamber maintenance to remove phosphorous compounds
- InAIGaAs/AIGaAs superior in many aspects
 - Literature shows equivalent QE & Pol
 - Growth requirements more standard
 - Material properties more tunable
- First InAlGaAs/AlGaAs samples delivered to JLab
- Next samples: DBR structure, Digital Alloy layer, optimized SSL in progress

