

Gas Stopper Developments for Improved Purity and Intensity of Low-Energy, Rare Isotope Beams

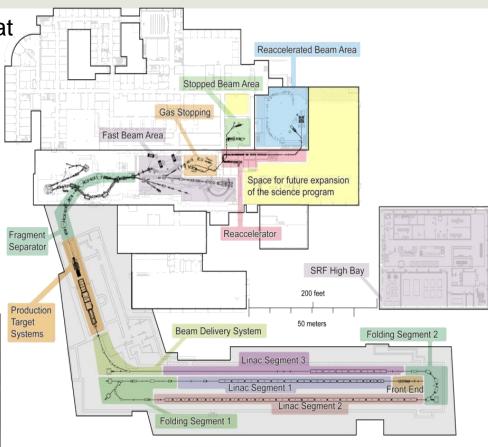
Ryan Ringle

Outline

- Facility for Rare Isotope Beams (FRIB)
 - Gas stopping concepts for production of low-energy, rare-isotope beams
 - Current (and pending) gas stoppers at FRIB
 - User needs and challenges
- Developments Enabled by This Project
 - Development of simulation tools to optimize ion transport in the presence of space charge
 - Development of a demonstrator collision-induced-dissociation (CID) gas cell for improving beam purity
- Status Updates
 - Concentrate on CID gas cell
- Project Management Updates
- Summary and Outlook

FRIB – Facility for Rare Isotope Beams World-Leading Next-Generation Rare Isotope Beam Facility

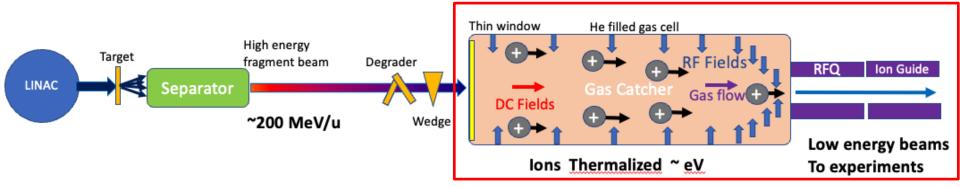
■ FRIB will produce ~1000 NEW isotopes at useful rates (4500 available for study)


 Higher-energy primary beams (200 MeV/ u for uranium)

 Highest intensity rare isotope beams available anywhere

■ Fast (~ 200 MeV/u), stopped (~ 30 keV), and re-accelerated (~ 6 MeV/u) beams available.

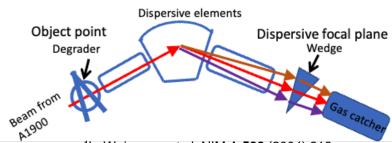
(requires gas stopping)



Now open for business!

In the last days of NSCL, 35% of experiments used beams requiring gas stopping.

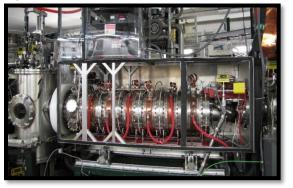
Beam Stopping of Fast Projectile Fragments


- Production of fragments from high-energy beam
 - Large momentum spread due to reaction mechanism and production target.
- ♣ Bρ and ΔE separation
 - A1900/ARIS separator (High acceptance: 5% ∆p/p), achromatic wedge
- Momentum compression and thermalization
 - Narrow momentum spread beams lead to high stopping efficiency¹
- Gaseous ions collection
- Low energy beam transport

30-60 kV platform

Method for producing an ideal incident beam:

- Degrade beam at the object point
- Bunch momentum spread with wedge at the dispersive focal plane^{2,3}



- ¹L. Weissman et al. NIM A **522** (2004) 212
- ²H. Weick et al., NIM B **164-5** (2000) 168
- ³H. Geissel et al., NIM A **282** (1989) 247

R. Ringle, DOE NP Exchange 2022, 11/29/22, Slide 4

Beam Stopping at FRIB ISOL-Like Beam Properties at a Fragmentation Facility

Original system: ANL Linear Gas Stopper¹

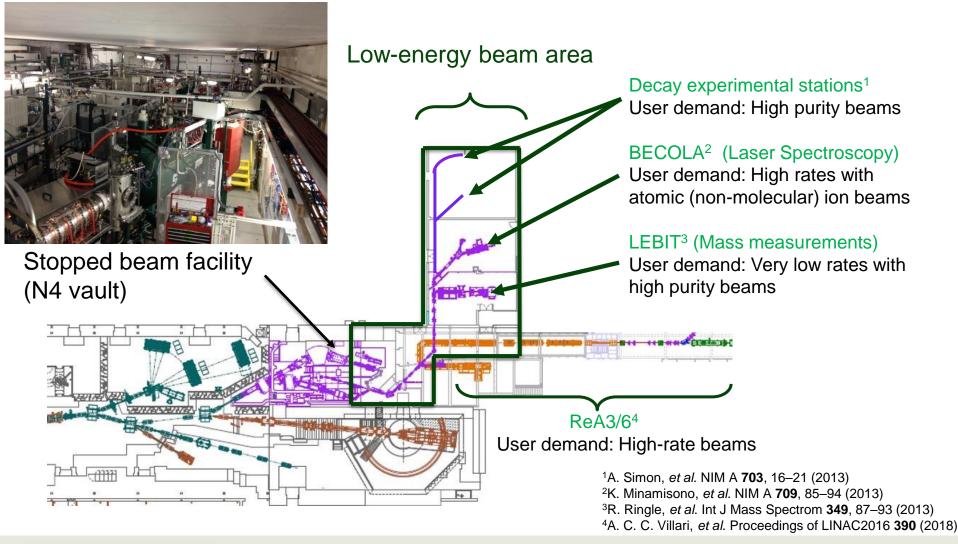
- Filled with ~100 mbar He
- Ions lose energy in collisions with He atoms
- DC + RF electric fields and gas flow used to transport ions through

¹C.S. Sumithrarachchi, et al. NIM B **463**, 305–309 (2019)

State of the Art: Advanced Cryogenic Gas Stopper²

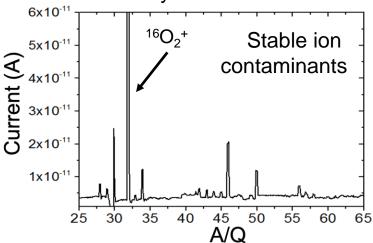
- Cryogenic (40 K) for higher beam purity
- Optimized for good efficiency with high beam rates
 - Currently in operation

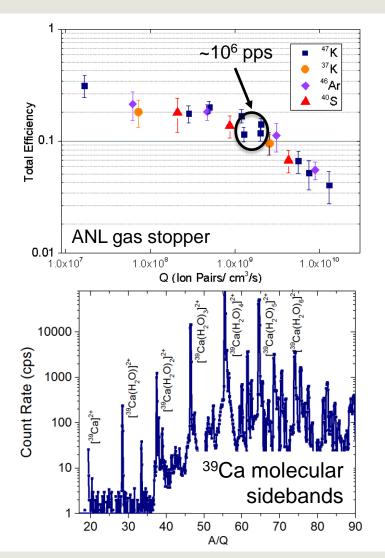
In progress: Cyclotron Gas Stopper³


- lons lose energy, spiral towards center
- Spiral path provides long stopping distance
- Good for light ions
- First beam extracted

³S. Schwarz et al. NIM B **463**, 293–296 (2020)

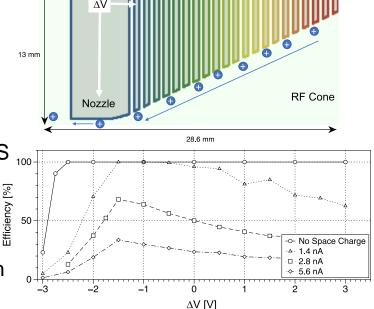
²K. R. Lund *et al.* NIM B **463**, 378–381 (2019)

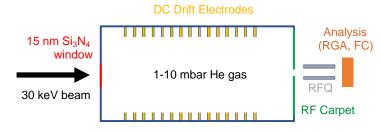

Experiments Using Stopped and Re-Accelerated Beams Have Different Requirements



Challenges to Beam Purity, Rate, and Molecular Formation

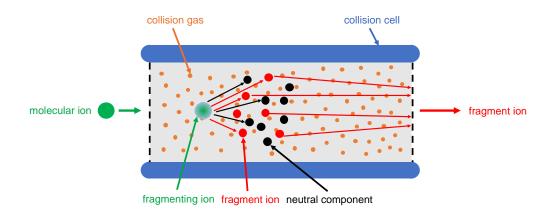
- Generation of large space-charge fields
 - He⁺/e⁻ created during stopping process
 - Can hinder transport efficiency
- Molecular ion formation with stopped rare isotopes
 - Spreads rare isotope across several mass peaks
 - Reduces efficiency through mass separator
- Large stable molecular ion beams
 - Trace contaminants in buffer gas or on surfaces are ionized during stopping process
 - Can cause efficiency losses in extraction



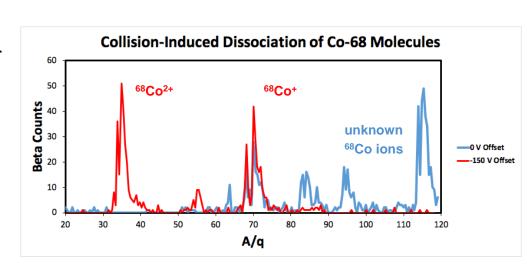


Next Generation Gas Stopper Developments Enabled by This Project

- Development of simulation tools to optimize ion transport efficiency through the stopping volume in presence of space charge
 - Use IonCool¹ and adapt particle-in-cell² (PIC) code to simulate transport efficiency in realistic space-charge fields
 - Validate using ion transport measurements across ACGS RF carpet
- Development of simulation tools to optimize extraction efficiency
 - Adapt PIC code to study ion extraction efficiency through orifice in presence of large stable molecular beams.
 - Validate using measurements performed with ANL and ACGS
- Build and test a low-pressure collision-induceddissociation (CID) gas cell to purify beams
 - Study transmission efficiency through 20 nm thick Si3N₄ entrance windows
 - Study CID process in molecular beams generated offline using existing ions sources

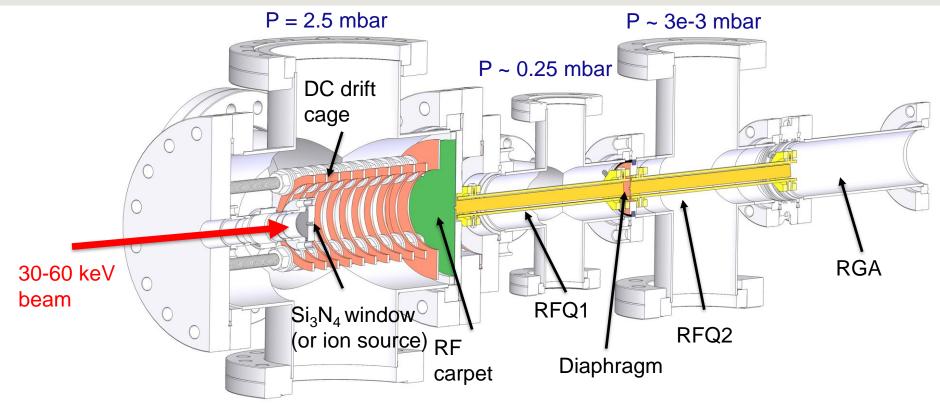

¹S. Schwarz, NIM A **566**, 233–243 (2006)

²R. Ringle, Int J Mass Spectrom **303**, 42–50 (2011)

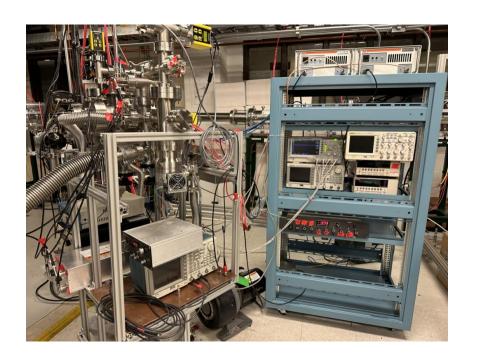


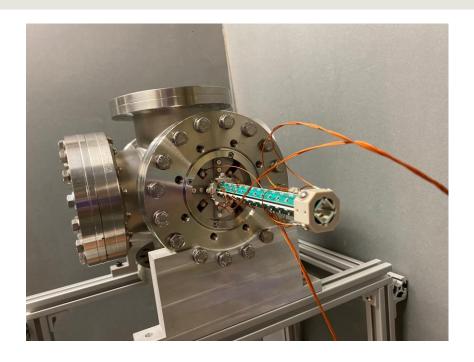
Collision-Induced Dissociation (CID) can Purify Rare Isotope Beams

- CID is a mass spectrometry technique widely used in analytical chemistry^{1,2}
- Molecules are accelerated into a buffer gas
- Inelastic collisions transfer some energy into the internal modes, breaking bonds


- CID is currently used at FRIB by applying a potential offset between the gas stopper and RFQ.
- Demonstrated in multiple experiments
- Not violent enough to break the strongest molecular bonds
- A dedicated device needs to be developed to break the strongest molecular bonds

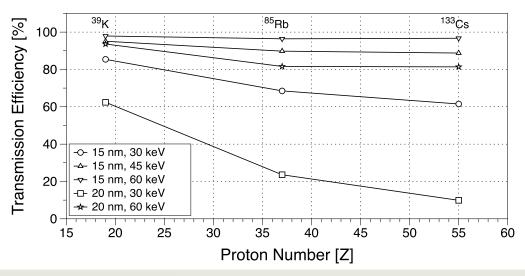
¹J.M. Wells, S.A. McLuckey, Meth. Enzymol. **402** (2005) 148–85 ²L. Sleno, D.A. Volmer, J. Mass Spectrom. 39 (2004) 1091–112

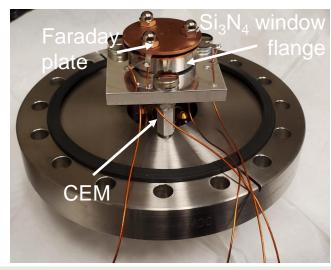

Demonstrator CID Gas Cell Will Enable Feasibility Studies



- 30-60 keV molecular or atomic ion beams provided by existing gas cells
- Ions are transported by DC drift cage to RF carpet
- Ions are extracted through small orifices into RFQ1&2 for transport and differential pumping
- · Ion species identified by RGA with ionizer disabled
- System is complete and functional. Offline commissioning using K ion source.

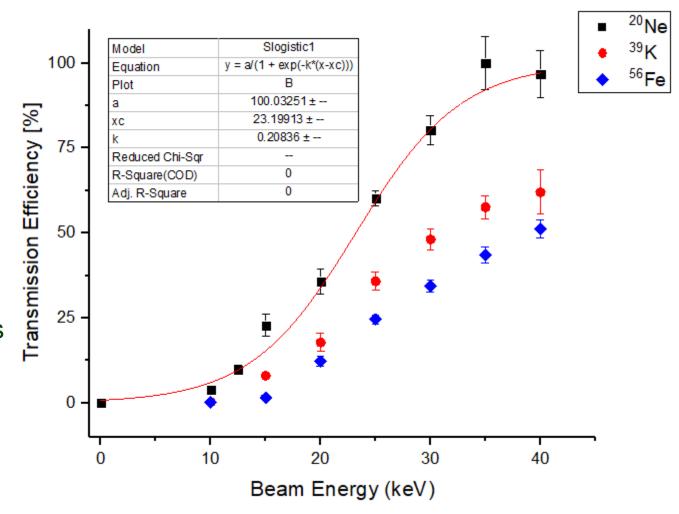
CID Gas Cell Demonstrator is Complete

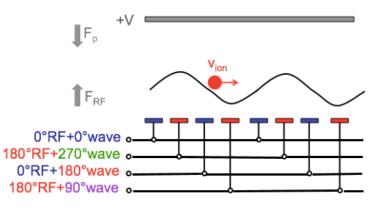


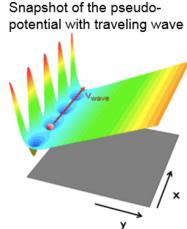


Ion Transmission Efficiency Studies through Si₃N₄ Windows

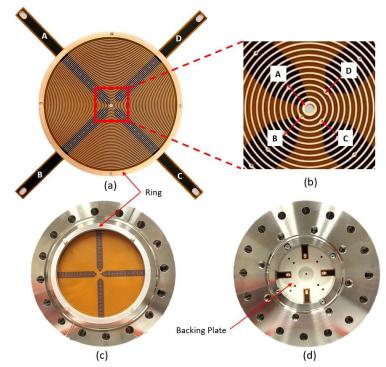
- Need to quantify ion transmission efficiency through thin Si₃N₄ windows
- SRIM can provide an estimate, but may not be accurate at this thickness
- Built a detector to measure ion transmission efficiency
 - Channeltron (CEM) for single-particle counting
 - Faraday plate with hole to measure incident current on Si₃N₄ window
 - Installed and measurements have been performed.




Initial Transmission Studies Show Promising Results


- Only statistical errors considered
- Limited to 40 kV maximum beam energy
- Trend for different masses show expected trend
- Some inconsistencies developed over time.
- Further
 measurements
 planned using full
 device

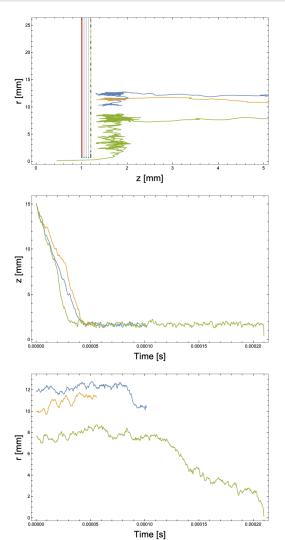
Ion Transport Across the RF Carpet

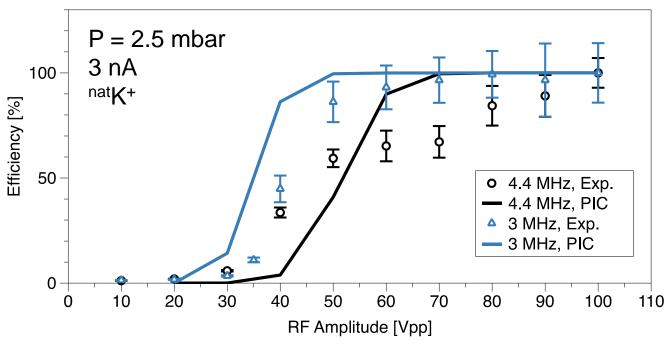


Traditional ion surfing method¹

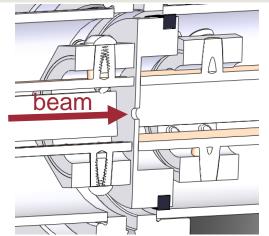
- High-frequency (MHz) RF
- Low-frequency (kHz) travelling wave
- High transport speeds and efficiencies demonstrated^{2,3}

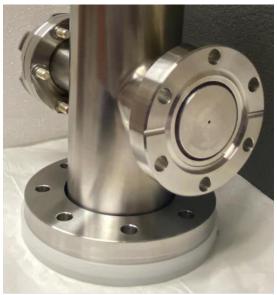
Pure-surf RF carpet

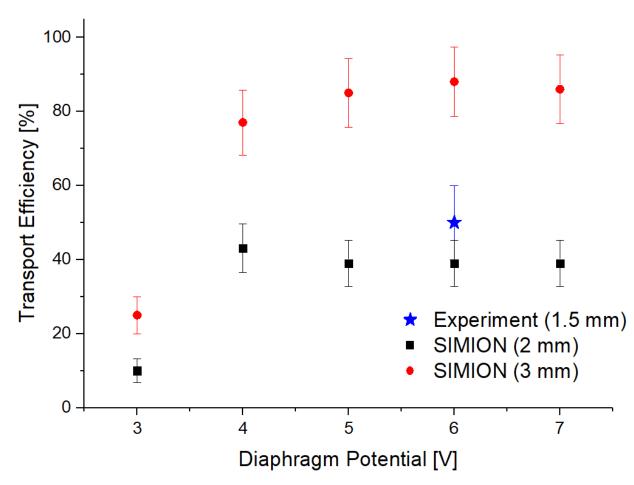

- Simplifies RF circuit
- Higher push-field tolerance
- ¹G. Bollen, Int. J. Mass Spectrom. **299**, 131 (2011).
- ²M. Brodeur, et. al., Int. J. Mass Spectrom. **336**, 53 (2013).
- ³A. E. Gehring, et. al., Nucl. Instrum. Meth. B **376**, 221 (2016).



- CID RF carpet can be run in traditional or pure-surfing modes
- Incident ion current will impact transport efficiency!

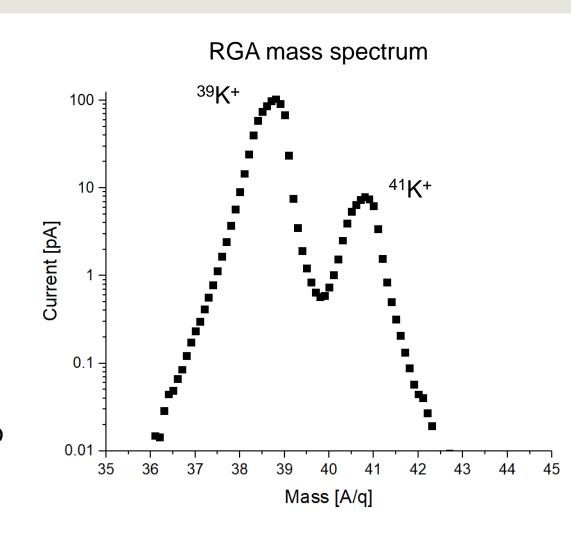

Particle-in-Cell Simulations Reproduce Ion Transport Across RF Carpet





- PIC simulations reasonably reproduce experimental trends
- Increased ion current makes transport more difficult
- Can be used in the future to optimize RF carpet geometry for high-current transport

Ion Transport Through Diaphragm Shows **Good Agreement with Simulation**



39,41K+ Successfully Transported and Detected at RGA

- Both ³⁹K+ and ⁴¹K+ observable with current settings
- Pressure:
 - 1-2x10⁻³ mbar
- Incoming current
 - ~1 nA (~ 10% efficiency)
- Reasonable resolution for single mass identification
- Next steps:
 - Improve injection into RGA to improve efficiency
 - External molecular beams starting this week!

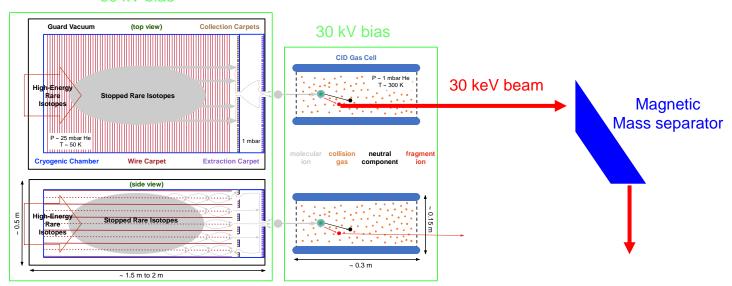
Project Management (Financials)

1 year no-cost extension granted

	FY21	FY22	FY23	Totals
a) Funds allocated	\$178k	\$178k		\$356k
b) Actual costs to date	\$106k	\$182k		\$288k
c) Budget request	\$122k	\$234k		\$356k

Item/Task	FY21	FY22	FY23
	(\$)	(\$)	
Simulation/CID effort	84,219	145,887	
CID hardware	5,667	9,857	
Materials & supplies	13,738	10,174	
Fabrication costs	2,516	10,928	
Travel	0	0	
Publication costs	0	0	
Total	106,140	176,846	

Project Management (Schedule)


					_				_			
Task (RF carpet ion transport simulations)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Collect results from previous 4-phase simulations	100%											
Complete missing 4-phase simulations		100%										
Develop 8-phase simulation				100%								
Execute 8-phase simulations							7	100%				
Analyze results												
				0.4	0.5		07			1 010		
Task (CID gas cell demonstrator)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	-	Q1
											1	2
Procure Si ₃ N ₄ windows and mounts	100%										\bot	
Assemble Faraday cup for transmission	100%											
measurements												
Measure transmission of windows						100%						
Design prototype CID gas stopper				100%								
Procure prototype CID gas stopper hardware							100%					
Fabricate prototype CID gas stopper						100%						
Install prototype CID gas stopper on d-line							100%					
extension												
Test prototype CID gas stopper with stable beam								10%				
Analyze results and prepare publication												
Took (Portiols in cell simulations)	04	02	02	04	OF	OC	07	00	00	010	011	013
Task (Particle-in-cell simulations)	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Development of single-layer RF carpet simulations	100%	100%										
Execution of single-layer RF carpet simulations Development of extraction simulations		100%										
Execution of extraction simulations		100%										
Development of multi-layer RF carpet simulations		10070	100%									
Execution of multi-layer RF carpet simulations			10070		80%							
Analyze results, execute follow up simulations (if					25%							
needed)												ĺ
Manuscript preparation and submission								30%				
Develop conceptual design based on all objectives												

Summary and Outlook

- For the first time we have a complete simulation pipeline for transport and extraction of rare isotopes from linear gas stoppers
 - Agrees well with current experimental results
 - Has already yielded dividends with improvements to ACGS
 - Well positioned to deliver developments that will increase the rate capability of future linear gas stoppers

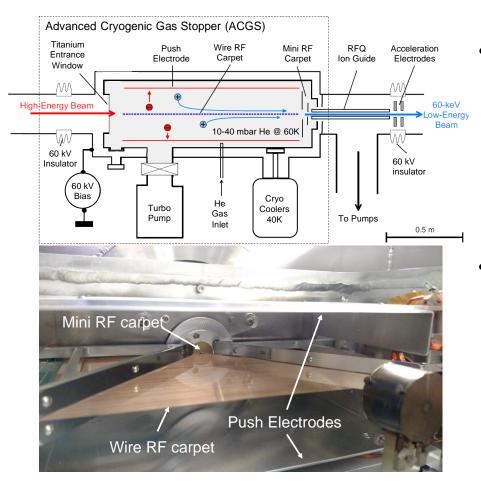
- A demonstrator CID gas cell with thin Si₃N₄ window has been developed to evaluate its feasibility in removing stable beam contaminants
 - Device is operational
 - Optimization is happening offline with dedicated ion source
 - Molecular beams to test CID starting this week.

Acknowledgements

NP-DOE DE-SC0021423

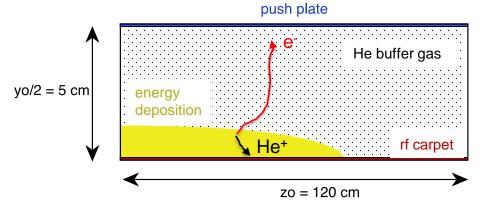
Co-Pls: Georg Bollen and Antonio Villari

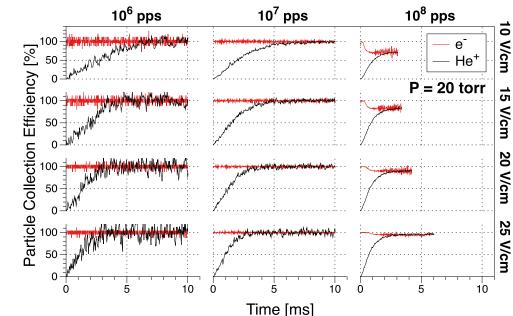
Postdoc : Nadeesha Gamage


Student : Daniel Puentes

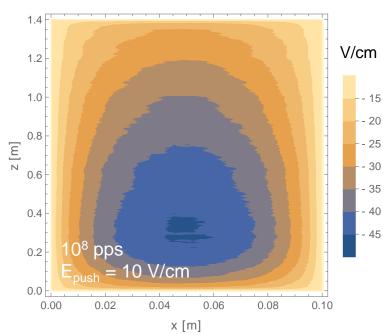
Beam delivery: Chandana Sumithrarachchi and Stefan Schwarz

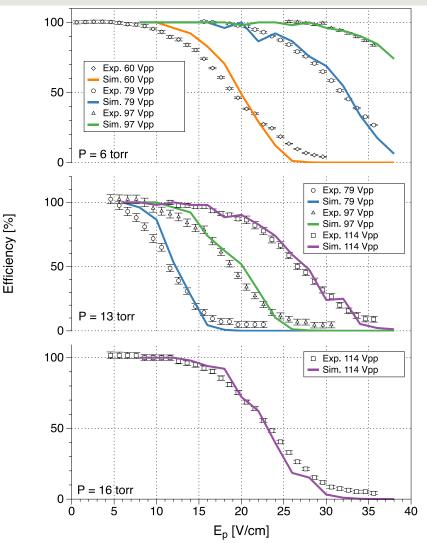
Backup Slides



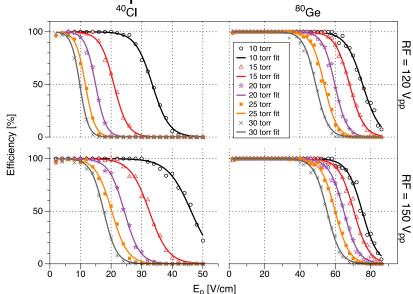

PIC Simulations Have Been Developed to Study Ion Transport and Extraction Efficiencies

- Total electric field at the surface of the wire RF carpet
 - Each stopped rare isotope generates ~
 10⁶ He⁺/e⁻ pairs
 - Slow He⁺ ion removal increases space charge in ACGS body, reducing transport efficiency
 - Increase He+/e- collection speed
- Charge capacity of extraction carpet and orifice
 - Charge exchange and/or direct ionization of impurities in He buffer gas generates beams of stable molecules
 - Extraction efficiency can be compromised by large stable beam currents
 - Increase charge throughput


Calculating the Total Electric Field at the Surface of the RF Carpet

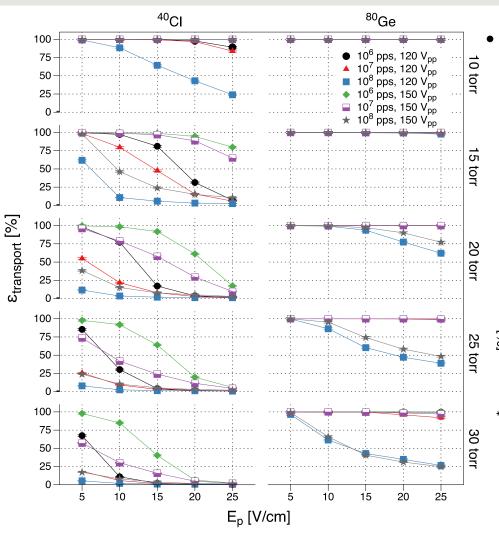

- PIC 3D Cartesian geometry
- Energy deposition from LISE++
- He⁺ and e⁻ included
- SDS gas collision model¹
- P = 20 Torr @ 50 K

total electric field strength at RF carpet surface

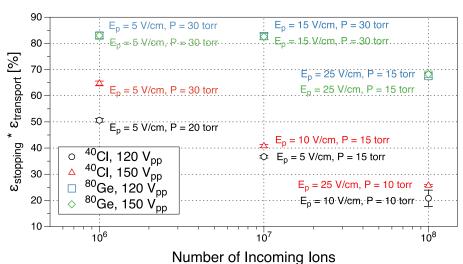


¹A.D. Appelhans & D. A. Dahl, Int J Mass Spectrom **244**, 1–14 (2005)

IonCool Accurately Calculates Ion Transport Efficiency Across ACGS RF Carpet

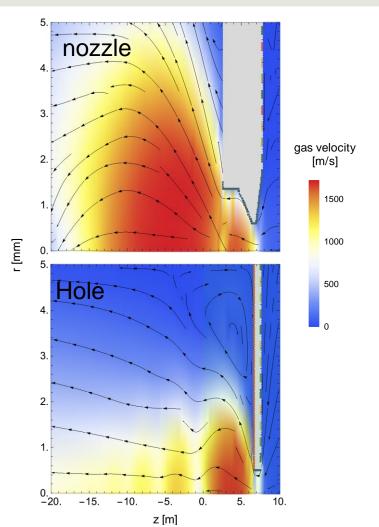


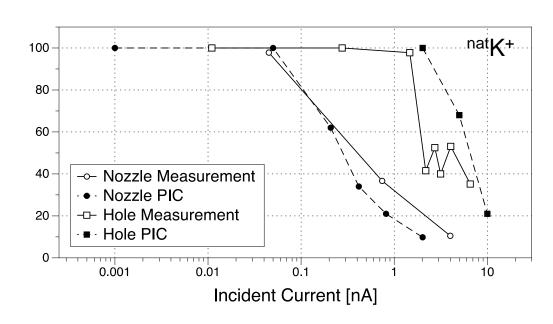
- Need to determine ion transport efficiency as a function of E_{push}
 - Using ACGS, ion transport efficiency of 39K+ was measured
 - Multiple pressures at T=50K.
 - IonCool simulation results show good agreement with experiment
 - Confident in IonCool results to make broader predictions



Michigan State University

Total RF Carpet Transport Efficiency from PIC and IonCool


- Combine IonCool and PIC results to calculate total transport efficiency
 - Stopped rare isotope distribution obtained from LISE++
 - Monte-Carlo approach used to calculate transport efficiency
 - Folding in stopping efficiency determines optimum total efficiency that is rate dependent¹



PIC Simulations of ACGS Extraction System **Yield Efficiency Improvements**


∃fficiency [%]

- 2D cylindrical RZ geometry
- Gas flow calculated with COMSOL
- Traveling wave transport across RF carpet^{1,2}
- Compared original ACGS "nozzle" extraction to a simple hole
- Simulations accurately predicted significant gain in throughput for the hole vs. nozzle

Contaminant Ions Can Have a Significant Impact on Extraction of Rare Isotope Beams

- Scan potential applied to orifice and vary the incident O₂⁺ current
- Once steady state is reached, create tracer particles for rare isotopes (⁴⁰Cl⁺ and ⁸⁰Ge⁺)
- O₂⁺ current can have a significant impact on extraction efficiency of rare isotopes
- Many studies complete and underway to optimize performance

