Annual NP Accelerator R&D virtual PI Exchange meeting - November 29, 2022

Matt Poelker and M. Stutzman, Jefferson Lab Sylvain Marsillac, ODU Erdong Wang, BNL

MBE, GSMBE, CBE and MOCVD (aka MOVPE)

Molecular

and gas sources

MBE

Gas Source Molecular Beam Epitaxy

elemental As, P, Ga

- Pressure ~10⁻⁸
 mbar
- Growth rates
 ~ 1 µm/hr
- Very precise control

GSMBE

Gas Source Molecular Beam Epitaxy

AsH₃, PH₃, elemental Gallium CBE

Chemical Beam Epitaxy

AsH₃, PH₃, triethyl gallium (TEGa) or elemental Gallium

- Pressure <10⁻⁴
 mbar
- Growth rates 0.5-1 µm/hr

Gas sources

MOCVD

Metal organic chemical vapor deposition (metal organic vapor phase epitaxy)

AsH₃, PH₃, trimethylgallium (TMGa)

- Pressures >100 mbar during growth
- Growth Rates 10 µm/hr
- Some claim difficult to get sharp interfaces

Annual NP Accelerator R&D meeting - November 29, 2022

Background

- SPIRE/Bandwidth Semiconductor used MOCVD to grow single-strained-layer GaAs/GaAsP photocathodes (good)
- SVT used MBE to grow strained-superlattice GaAs/GaAsP photocathodes (better)
- In this work JLab, ODU and BNL focus on MOCVD
 - Strained Superlattice photocathodes
 - Strained Superlattice photocathodes with DBR
- We were granted 3 months no-cost extension, project officially ends 12/31/2022

Project Goals

✓ ✓ ×

Tasks Year 1	Q1	Q2	Q3	Q4
Calibration of p-GaAs _{0.65} P _{0.35} (ODU)				
Calibration of metamorphic grade from GaAs to GaAs _{0.65} P _{0.35} (ODU)				
Calibration of GaAs/GaAs0.65P0.35 strained superlattice (ODU)				
Mott system: assemble and pump down (BNL)				
System commissioning and calibration (BNL & J)				
Fabrication runs strained-superlattice (ODU & JLab & BNL)				
Strained-superlattice Photocathodes Evaluation (JLab)				

Tasks Year 2	Q1	Q2	Q3	Q4
Calibration of p-AlAs _{0.6} P _{0.4} (ODU)				
Calibration of GaAs _{0.65} P _{0.35} /AlAs _{0.6} P _{0.4} DBR (ODU)				
Strained-superlattice Photocathodes Evaluation (BNL)				
Fabrication runs strained superlattice with DBR (ODU & JLab & BNL)				
Measure CsTe/CsL coated SL-GaAs (BNL)				
Strained superlattice/DBR Photocathodes Evaluation (Job & BNL)				

Project Conclusion

Stated clearly:

- We successfully fabricated both kinds of photocathodes, SSL and SSL with DBR, via MOCVD. Exceptional work by ODU
- We achieved our central goal: Polarization > 90% and QE > 1%
- Between JLab and BNL, we have nearly 200k\$ worth of photocathode material, our photocathode stores now replenished! Enough material for polarimeter cross checks, to support CEBAF and EIC physics programs, and to support polarized source R&D
- BNL has a fully functional microMott polarimeter, and this device was essential for project success
- JLab's microMott polarimeter is very close to being operational again
- The cross calibration of the two microMott polarimeters will happen
- Having both source groups JLab and BNL participating in this project has been wonderful, a big selling point (IMHO)

Budget

JLab FY20 + FY21 loaded budget = 360k\$

- Support for ODU
- Procurements: sample evaluation, Mott apparatus upkeep
- Some labor for Matt and Marcy

WBS (Project Id)	Item/Task	Baseline Total Cost (AY\$)	Costed & Committed (AY\$)	Estimate To Complete (AY\$)	Estimated Total Cost (AY\$)
000001.04.05.028.001	MOCVD Photocathode - ODU	\$360,000	\$346,782	\$13,218	\$360,000
Matt Poelker	Totals:	\$360,000	\$346,782	\$13,218	\$360,000

Budget

BNL FY20 + FY21 loaded budget = 100k\$

- Sample evaluation
- Mott apparatus upkeep

		Baseline	Costed	Estimate	
		Total Cost	&	То	Estimated
ID #	Item/Task		Committed	Complete	Total Cost
		(AY\$)	(AY\$)	(AY\$)	(AY\$)
	Photocathodes with 90% polarization and QE > 1% for DOE NP	100,000	82,513	17,487	100,000

Making polarized electron beams with GaAs

Bulk GaAs – no strain

Maximum Polarization 50%

Making polarized electron beams with GaAs

Maximum Polarization 100%

Annual NP Accelerator R&D meeting - November 29, 2022

Strained Superlattice Strained Superlattice with Distributed Bragg Reflector $p=5 \times 10^{19} \text{ cm}^{-3}$ $p=5 \times 10^{19} \, \text{cm}^{-3}$ GaAs 5 nm GaAs 5 nm $p=5 \times 10^{17} \text{ cm}^{-3}$ $p=5 \cdot 10^{17} \text{ cm}^{-3}$ GaAs/GaAsP (3.8/2.8 nm) GaAs/GaAsP (3.8/2.8 nm) SL ×14 ×14 SL $p=5 \times 10^{18} \text{ cm}^{-3}$ GaAsP_{0 35} 750 nm the superlattice - where the (54/64 nm) $p=5 \times 10^{18} \text{ cm}^{-3}$ GaAsP_{0.35} 2750 r polarized electrons come from, ×12 $p=5 \times 10^{18} \text{ cm}^{-3}$ 2000 nm many thin layer pairs Graded GaAsP, Graded GaAsP_x $p=5 \times 10^{18} \text{ cm}^{-3}$ $p=5 \times 10^{18} \text{ cm}^{-3}$ 5000 nm 5000 nm $(x = 0 \sim 0.35)$ $(x = 0 \sim 0.35)$ $p=2 \times 10^{18} \text{ cm}^{-3}$ $p=2 \times 10^{18} \text{ cm}^{-3}$ GaAs buffer 200 nm GaAs buffer 200 nm p-GaAs substrate (p>10¹⁸ cm⁻³) p-GaAs substrate (p>10¹⁸ cm⁻³)

Strained Superlattice				Strained Superlattic	e with Distribute	d Bragg Reflector
GaAs	5 nm	p=5 $ imes$ 10 ¹⁹ cm ⁻³		$=5 \times 10^{19} \mathrm{cm}^{-3}$ GaAs		p=5 $ imes$ 10 19 cm $^{-3}$
GaAs/GaAsP SL	(3.8/2.8 nm) ×14	$p=5 imes 10^{17} \mathrm{cm}^{-3}$		$=5 \times 10^{17}$ cm ⁻³ GaAs/GaAsP SL		$p=5 \cdot 10^{17} \text{ cm}^{-3}$
		Highly doped	l s	urface layer to	750 nm	$\rm p=5\times10^{18}cm^{-3}$
GaAsP _{0.35}	2750 nm	reduce surfa	reduce surface charge limit			p=5 $ imes$ 10 18 cm $^{-3}$
		(good	וג		2000 nm	$\rm p=5\times10^{18}cm^{-3}$
Graded GaAsPx (x = 0~0.35)5000 nm $p=5 \times 10^{18} cm$		p=5 $ imes$ 10 ¹⁸ cm ⁻³		Graded $GaAsP_x$ (x = 0~0.35)	5000 nm	p=5 $ imes$ 10 18 cm $^{-3}$
GaAs buffer 200 nm		$p=2 \times 10^{18} \text{ cm}^{-3}$ GaAs buffer		200 nm	p=2 $ imes$ 10 18 cm $^{-3}$	
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)				p-GaAs s	ubstrate (p>10 ¹	⁸ cm ⁻³)

Strained Superlattice

Strained Superlattice with Distributed Bragg Reflector

GaAs	5 nm	Metamorphic g	gra	ding: starting w	/ith ^{5 nm}	$p=5\times10^{19}\text{cm}^{\text{-3}}$
GaAs/GaAsP SL	(3.8/2.8 ×14	GaAs, ending	g W	ith GaAs _{0.65} P _{0.3}	5 /2.8 nm) ×14	$p=5 \cdot 10^{17} \text{ cm}^{-3}$
		which thick h	eia uff	er laver is grow	50 nm	p=5 $ imes$ 10 18 cm ⁻³
GaAsP _{0.35}	2750 n	2750 nm $p=5 \times 10^{18} \text{ cm}^{-3}$		DBR	(ع-1/64 nm) ×12	p=5 $ imes$ 10 18 cm ⁻³
				GaAsP _{0.35}	2000 nm	p=5 $ imes$ 10 ¹⁸ cm ⁻³
Graded $GaAsP_x$ (x = 0~0.35)	raded GaAsP _x (x = 0~0.35) 5000 nm		p=5 \times 10 ¹⁸ cm ⁻³		5000 nm	p=5 $ imes$ 10 ¹⁸ cm ⁻³
GaAs buffer200 nm $p=2 \times 10^{18} \text{ cm}^{-3}$			GaAs buffer	200 nm	p=2 $ imes$ 10 ¹⁸ cm ⁻³	
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)				p-GaAs s	substrate (p>10	¹⁸ cm ⁻³)

Strained Superlattice

Strained Superlattice with	Distributed	Bragg	Reflector
----------------------------	-------------	-------	-----------

	GaAs	5 nm	$\rm p=5\times10^{19}cm^{-3}$						
	GaAs/GaAsP	(3.8/2.8 nm)	p=5 $ imes$ 10^{17} cm ⁻³						
	Another complicated								
	superlattice which forms the								
(distributed Bragg reflector (DBR)								
	Graded GaAsP _x (x = $0 \sim 0.35$)	5000 nm	p=5 $ imes$ 10 18 cm $^{-3}$						
	GaAs buffer	200 nm	$\text{p=}2\times10^{18}\text{cm}^{\text{-}3}$						
	p-GaAs substrate (p>10 ¹⁸ cm ⁻³)								

	GaAs	5 nm	$\rm p{=}5\times10^{19}\rm cm^{{\scriptscriptstyle -}3}$						
	GaAs/GaAsP SL	(3.8/2.8 nm) ×14	$p=5 \cdot 10^{17} \text{ cm}^{-3}$						
	GaAsP _{0.35}	750 nm	p=5 $ imes$ 10 18 cm $^{-3}$						
GaAsP _{0.35} / AlAsP _{0.4} DBR		(54/64 nm) ×12	p=5 $ imes$ 10 18 cm $^{-3}$						
	GaAsP _{0.35}	2000 nm	p=5 $ imes$ 10 18 cm $^{-3}$						
G Etalon formed between DBR and									
top surface: stores light, more									
	light absorbed, higher QE								
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)									

MOCVD growth parameters

- Key Precursors
 - Trimethyl Gallium (Ga(CH₃)₃)
 - Arsine (AsH₃) and Phosphine (PH₃)
 - Diethyl Zinc (Zn(CH₃CH₃)₂)
 - Carbon Tetrachloride (CCl₄)
 - Lower diffusivity of carbon in GaAsP should improve lifetime of device surface
- Substrate: 2" GaAs wafers with either 0 or 2° offcut in the 110 direction
- Growth rate range: 3-8 µm/hr
- Temperature: 650-750°C

MOCVD system at Rochester Institute of Technology

Issues that needed to be resolved

- Sample temperature and growth rate for best metamorphic grading
- Phosphorus concentration for optimum strain and polarization
- Defect mitigation
- Cleave plane orientation, offcut or no offcut

- Telemetry: in-situ measurement
 - Pyrometry
 - Curvature

- Nomarski Microscopy : ex-situ measurement
 - Differential interference contrast (DIC) microscopy
 - Surface topography

GaAs_{0.95}P_{0.05} minimal strain so minimal surface features Textured photocathode, good, there's uniform strain poorly relaxed growth

- X-ray Diffraction : ex-situ measurement
 - Used to measure material strain and composition
 - destructive and constructive interference that occurs when X-rays impinge on sample

GaAs/GaAs_{0.65}P_{0.35} superlattice samples grown on different substrates:

(100) substrate, 2 degree offcut in the (110) direction

- X-ray Diffraction : ex-situ measurement
 - Reciprocal phase space mapping
 - Shows relaxation of deposited films, key to determining quality of the deposited metamorphic grading

3µm/hr 730°C Growth Temp Close to vertical line: more strain

10µm/hr 730°C Growth Temp Close to diagonal line: less strain

Annual NP Accelerator R&D meeting - November 29, 2022

- Transmission Electron Microscopy : ex-situ measurement
 - TEM micrographs (Images)
 - Selected Area Electron Diffraction (SAED)
 - Energy Dispersive X-Ray Spectroscopy (EDS)

- Ellipsometry (optical method, layer thickness)
- Photoluminescence (PL) mapping (uniformity)
- Hall Effect (measure dopant concentration)
- Atomic Force Microscopy (surface defects)

r051-2_center_20x20.005.f.2002

Old Dominion University, Ben Belfore's first set of photocathodes, SSL

Pol ~ 70% QE ~ 0.3% λ_{peak} ~ 820 nm

ODU Ben's second set of photocathodes, SSL

Pol ~ 80% QE ~ 0.4% λ_{peak} ~ 785 nm

ODU Ben's third set of photocathodes, SSL with DBR

Pol ~ 83% QE ~ 3% λ_{peak} ~ 785 nm

ODU Ben's fourth set of photocathodes, SSL with DBR

Pol ~ 83% QE ~ 1.3% λ_{peak} ~ 775 nm

Old Dominion University, Adam Masters' first set of photocathodes, SSL with DBR

Pol ~ 90% QE ~ 1% λ_{peak} ~ 785 nm

ODU Adam's first set of photocathodes, SSL with DBR

Higher QE following HCl rinse hints at surface contamination

Pol ~ 92% QE ~ 2.3% λ_{peak} ~ 785 nm

'microMott', 'retarding field', low voltage polarimeters

Jefferson Lab 28

Annual NP Accelerator R&D meeting - November 29, 2022

Conclusion

- Multiple devices grown superlattice and superlattice samples with distributed Bragg reflector
- Successful interaction with "service providers": North Carolina State University and Rochester Institute of Technology
- Problems solved in timely manner: successful doping and compositional calibration of all layers, viable and reliable growth recipes identified
- MOCVD is definitively a reliable method for fabricating high polarization photocathodes with good QE
- Future Work: arsenic cap layer, hydrogen cleaning, higher QE (higher polarization too, why not?)

Project Conclusion

Stated clearly:

- We successfully fabricated both kinds of photocathodes, SSL and SSL with DBR, via MOCVD. Exceptional work by ODU
- We achieved our central goal: Polarization > 90% and QE > 1%
- Between JLab and BNL, we have nearly 200k\$ worth of photocathode material, our photocathode stores now replenished! Enough material for polarimeter cross checks, to support CEBAF and EIC physics programs, and to support polarized source R&D
- BNL has a fully functional microMott polarimeter, and this device was essential for project success
- JLab's microMott polarimeter is very close to being operational again
- The cross calibration of the two microMott polarimeters will happen
- Having both source groups JLab and BNL participating in this project has been wonderful, a big selling point (IMHO)

Sample NO.	Sample structure	QE at ~780 nm	ESP at ~780 nm	Growth method	Production date	Test date
AXT-bulk-1	bulk GaAs	2.7%	26%	NA	2021	Aug, 2021
Japan-SSL-1	unknow	0.4%	71%	unknow	unknow	Aug, 2021
SVT-BNL-1601	GaAs/GaAsP SSL	0.97%	88%	MBE	2017	Sep, 2021
SVT-BNL-7121	GaAs/GaAsP SSL +DBR	0.27%	92%	MBE	2017	Sep, 2021
Sandia-EB7358-1	SC GaAs/GaAsP SL + DBR	5.7%	69%	MBE	2021	Oct-Dec, 2021
Sandia-EB7358-2	SC GaAs/GaAsP SL + DBR	13%	63%	MBE	Dec, 2021	Dec, 2021
ODU-BNL-1	GaAs/GaAsP SSL	0.6%	56%	MOCVD	Mar, 2022	Mar, 2022
ODU-22R065-1	GaAs/GaAsP SSL +DBR	2.7%	81%	MOCVD	Apr, 2022	Apr, 2022
ODU-22R064-1	GaAs/GaAsP SSL	0.5%	78%	MOCVD	Apr, 2022	Apr, 2022
ODU-22R091-1	GaAs/GaAsP SSL +DBR	1.3%	83%	MOCVD	May, 2022	Jun, 2022
VE4874c	SC GaAs/GaAsP SL + DBR	1.26%	67%	MOCVD	May, 2022	Jun, 2022
VE4875c	SC GaAs/GaAsP SL + DBR	5.07%	80%	MOCVD	May, 2022	Jun, 2022
VE4879c	SC GaAs/GaAsP SL + DBR	4.36%	75%	MOCVD	May, 2022	Jul, 2022
ODU-22R112-1	GaAs/GaAsP SSL +DBR	1.24%	90%	MOCVD	Jul, 2022	Jul, 2022
ODU-22R113-1	GaAs/GaAsP SSL +DBR	2.18%	92%	MOCVD	Jul, 2022	Aug-Sep, 2022
VE4856a	SC GaAs/GaAsP SL	1.82%	56%	MOCVD	May, 2022	Sep, 2022

MOCVD: Photocathode progress

Dr. Sylvain Marsillac, Old Dominion University

Results: Metamorphic Grading

- High-quality strain relaxation of underlying layers is key to getting intended GaAs strain in the emitting region
- Necessary because of growing on lattice mismatched substrate
- RSM used to characterize extent of relaxation in metamorphic layers
- Key parameters changed:
 - Growth Rate
 - Growth Temperature
 - Arsine/Phosphine Ratio

Results: Metamorphic Grading

- Slower Growth Rate resulted in highest strained films (left)
- High Temperature with smaller composition change between steps is more promising (right)

Jefferson Lab 35

Annual NP Accelerator R&D meeting - November 29, 2022

Results: MOCVD

Higher temperatures yielded improved surface with moderate relaxation throughout

730°C growth temperature

Optimizing temperatures, graded layer profile

100 um

Marcy Stutzman 10 Nov 2021 P3 Workshop

Results: Device Continued

- Surface quality initially poor but subsequent runs improved surface quality
- Refining runs to improve relaxation

Surface completely matted, RSM not performed

MOCVD monitoring: graded layer optimization

Making polarized electron beams with GaAs

Maximum Polarization 50%

Maximum Polarization 100%

Annual NP Accelerator R&D meeting - November 29, 2022