

Development of Practical Niobium-Tin Cavities for Ion Linacs

Michael Kelly Accelerator Development Group Leader, Physics Division

Argonne Accelerator Development Group: Ben Guilfoyle, Mark Kedzie, Troy Petersen, Tom Reid, Gongxiaohui Chen (moved to HEP) Fermilab Technical Lead: Sam Posen RadiaBeam Technical Lead: Sergey Kutsaev 2022 NP Accelerator R&D and AI-ML PI Exchange Meeting

November 29, 2022

The present paradigm for CW Accelerators like ATLAS

Modern linear accelerators based on cavities fabricated from high purity Nb

Motivation for this work

Low-beta cryomodule with 100 MHz cavities are large, module cost of order ~\$10M in low quantity

- Goal: Transformational cost reductions
- Higher gradient? Niobium is near limits; and even with new materials, improvements difficult due to field emission (dirt)
- Future ATLAS upgrades, applications like medical isotopes much more attractive if \$↓

2019 ANL/FNAL half-wave cryomodule for PIP-II

2014 ATLAS Energy and Intensity Upgrade Cryomodule

2009 ATLAS Energy

Upgrade Cryomodule

Main goal of the project

Demonstration of high-frequency ion linac cavity from Nb₃Sn

- A foundationally new approach to the design, fabrication and operation of ion linear accelerators
- Ion linacs several times smaller, cheaper and less complex than today's niobium based accelerators
 - Implications of successful niobium-tin are different than for elliptical cavities
 - 1. "2 Kelvin" performance at 4.5 Kelvin is one advantage in terms of cryogenics
 - However, for ion linacs, the combination of negligible (BCS) surface resistance (RF losses), while simultaneously using higher cavity frequency by 2-4 times, can be used to achieve a transformational reduction in cavity, cryomodule, subsystem costs

Summary of expenditures by fiscal year (FY):

	FY20 (\$)	FY21 (\$)	Totals (\$)
a) Funds allocated	598,185	592,885	1,191,070
b) Actual costs to date	444,738	548,915	993,653

Major Deliverables and Schedule

	1st Qua	rter	2nd Quarter	3rd Quarte	er	4th Q	uarter	1st Quar	rter	2nd Quarter	3rd Quarter	4th Quarter
1. Parametric Studies in CST	ANL											
2. ANSYS Analysis	Radi	aBeam										
3. Cavity Development and Fabrication					Develo	oment	and Fabrica	ition				
3.1 Niobium and Jacket Fab Plan		ANL										
3.2 Material Procurement			A	NL								
3.3 Design/Build Dies			ANL									
3.4 Fabricate Aluminum Test Parts				ANL								
3.5 Fabricate Niobium Parts/Cavities						ANL						
3.6 Fabricate Parts/Install He Jacket									ANL			
4. Design Furnace Hot Zone Parts							Furnace	and Hot Zo	one			
4.1 Fabricate Tin Source				FNAL								
4.2 Fabricate Flange Covers					FNAL							
4.3 Perform Nb3Sn Coating (possible re-coat)									FN	IAL	FNAL	
5. Pneumatic Slow Tuner System			F	Pneumatic Slow Tu	iner							
5.1 Design Slow Tuner Hardware		RadiaB	eam									
5.2 Fabricate Slow Tuner Hardware				Radia	Beam							
6. Cleaning and Chemistry									Clean	ing and Chemist	ry	
6.1 Initial Bare Niobium Cavity								ANL				
6.2 Before Tin Coating												
6.3 After Tin Coating												
6.4 After Jacketing												
7. Cavity Testing										Cavity Testin	g	
7.1 Install Slow Cooldown Systems at ANL								ANL				
7.2 Test Uncoated Nb Cavities									ANL			
7.3 Test Nb3Sn Coated Cavities										FNAL ANI		
7.4 Test Final Jacketed Cavities												ANL
8.0 Design Stand-alone Cryocooler										RadiaBea	am	
9.0 Project Reporting and Float							5. 5. 5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					Reporting/Float

Technical Description and Current Status

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

'Why use Nb₃Sn and what does it offer for a quarterwave?

 Present state: Ion linacs are built from large ~1+ meter long niobium cavities

- Niobium $R_s \approx$ several 10's $n\Omega \rightarrow$ Cryomodule loss ~100 Watts in 4.5 K helium (dot-dash red curve)

- Small (high frequency) niobium cavities would have very high losses into helium (solid red)
- Cavities from niobium-tin can be simultaneously small (>200 MHz) and have low RF losses

cavity module

This work has been going on for 10+ years, what's to show? Results of Nb₃Sn cavities coated at FNAL

Five-cell CEBAF cavity with integral waveguides successfully coated with Nb3Sn

Message: Fermilab and others are producing Nb3Sn cavities with useful performance

Final Electromagnetic Design

Includes quarter-wave steering correct need for useful cavity

Parameter	Value	Unit
Frequency (as simulated)	217.9	MHz
Beta (peak)	0.12	
Planned Voltage	1.3	MV
R/Q	445	Ohm
G	44	Ohm
E _{PEAK}	45	MV/m
B _{PEAK}	54	mT
P _{dissipated} @ Q=1e10	0.39	Watts

Reasonably achievable goal

Deliverable 1

5 degree tilt on drift-tube faces produces transverse electric field that cancels on-axis magnetic field steering

Ş

Mechanical Analysis

Stresses are

large useable

tuning range

Similar as for standard niobium, combination of helium pressure and mechanical tuner

Argonne NATIONAL LABORATORY

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

Cavity Development and Fabrication

No present U.S. vendors for finished niobium cavities

- Situation: AES out of business, Roark has some, but not all capabilities, European vendors costly/slow
- Approach: In the tradition of ANL development of US partners for accelerators (Meyer Tool, Sciaky,

Andersen Dahlen) We have developed and qualified a new U.S. vendor for niobium cavity parts

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

Deliverable 3

Cavity Development and Fabrication

Deliverable 3

Step-by-step fabrication plan by postdoc Gongxiaohui Chen

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

NATIONAL LABORATORY

Cavity toroid hydroforming

3 TOROID (HYDROFORMING)

The toroid of the Nb3Sn was also hydroformed by Stuecklen. A 12" by 12" sqaure Nb blank(thickness of 0.125") was used for the toroid fabrication.**3.3** STEP 3

3.1 STEP 1

In Step 1, the steel die was provided by Stuecklen.

Figure 5: Step 1 forming.

Figure 6: Step 2 forming.

STEEL BACKING PLATE

Figure 7: Step 3 forming. Note: the nub shown in the old design follows the profile of the nub used in the dome. The new design was adopted in the final toroid die.

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

Deliverable 3

Cavity bottom dome hydroforming

(Only niobium hydroforming in U.S. today)

2 DOME (HYDROFORMING)

The dome of the Nb3Sn cavity was made by using the hydrofroming technique, and was fabricated at a local machine shop- Stuecklen Manufacturing Co. (10020 Pacific Ave, Franklin Park, IL 60131).

The following subsections demonstrate the detailed forming process of the cavity dome. A 12" by 12" square Nb blank was prepared for the dome fabrication.

2.1 STEP 1

ANL-designed aluminum hydroforming dies

Figure 2: Step 1 forming.

2.2 STEP 2

2.3 STEP 3

Figure 3: Step 2 forming.

Figure 4: Step 3 coining.

'low RRR' test (left), production parts (middle), test dome w/ ports (right)

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

Deliverable 3

Cavity toroid hydroforming

3.5 STEP 5

3.4 STEP 4

Figure 8: Step 4 forming. Note: the Al die was modified later at ANL Central Shops on 9/28/2021

Deliverable 3

Figure 9: Step 5 coining.

Aluminum, low RRR and final niobium toroids (left to right)

2022 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 29

Cavity Outer Housing Deep Drawing

Deliverable 3

A 'simple' half cylinder with a re-entrant nose is easier by this method

Cavity Tuning and Electron Beam Welding Deliverable 3

(Top left) 3D niobium machining of drift tube at RadiaBeam and final assembly for e-beam welding (bottom left and middle)

Cavity port welding at Sciaky

Plan for Coating a Quarter-wave Cavity

NORUM TYPE 1 REACTOR GRADE

B F10170934

Argonne

Final coarse tuning and QA before chemistry

Deliverable 3

1 Year Look Ahead

- Complete electropolishing of niobium cavity (week of 11/28/22) Deliverable 6
- Cold test bare niobium cavity at Argonne (Dec. 2022) Deliverable 7
- Fermilab has fabricated components required for the coating process; port/flange covers are being test fit (week of 11/28/22) Deliverables 4
- Argonne will supply the cavity to Fermilab for coating early in calendar 2023
 Deliverables 4
- RadiaBeam carrying forward work on two cryocoolers
 - The one supported by this work is a novel 10 Watt nominal GMJT cryocooler for Sumitomo
- Continuing effort will be to deploy one of these cavities as rapidly as possible into ATLAS in order to gain experience with the technology

