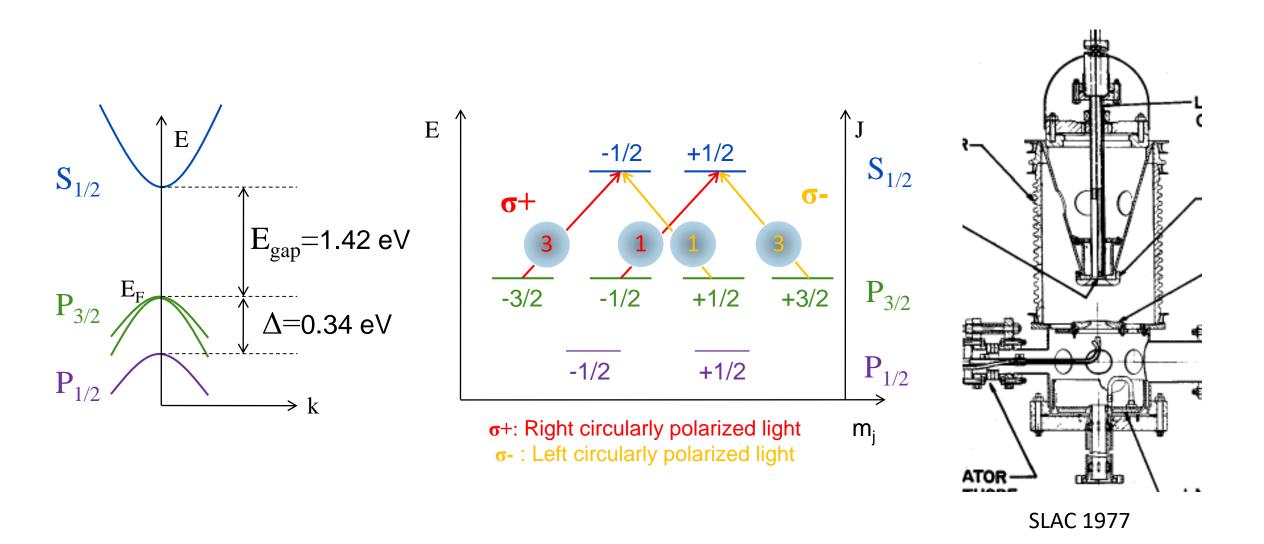
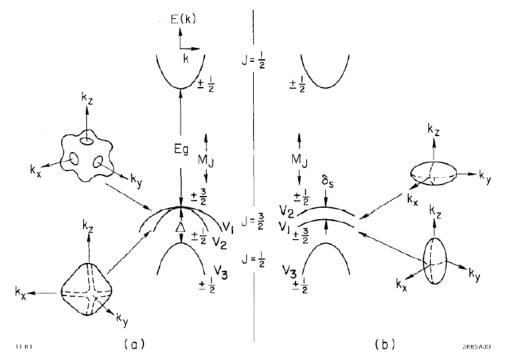
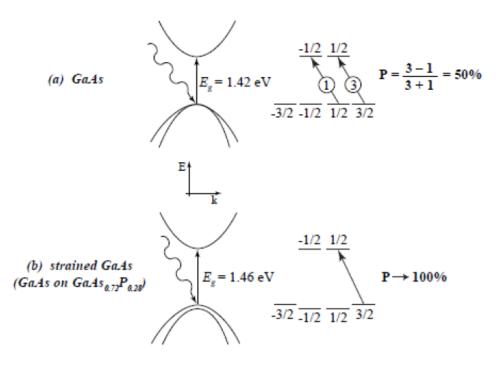

Investigation into chemical beam epitaxy (CBE) for high polarization strained superlattice GaAs/GaAsP photocathodes


Annual NP Accelerator R&D and AI/ML PI Meeting November 30, 2021

Marcy Stutzman, Jefferson Lab Chris Palmstrøm and Aaron Engle, UCSB


Spin Polarized Photoemission from Bulk GaAs



Breaking the 50% barrier

PhD thesis, Paul Zorabedian, SLAC Report 248, 1982

Eliminate degeneracy of P_{3/2} state via "Interface Stress Method"

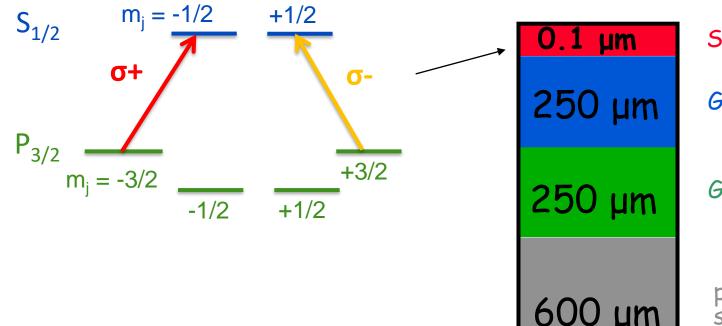
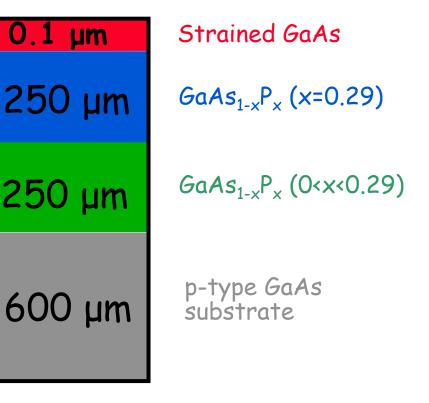
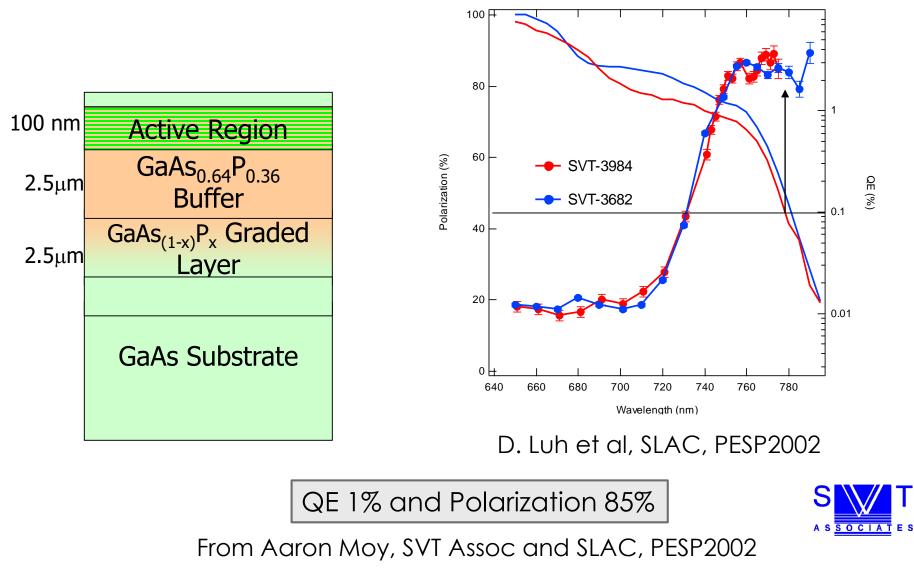

Application of a uniaxial strain removes the degeneracy of the $P_{3/2}$ state

Image from Pablo Saez, PhD Thesis, Stanford University, SLAC Report 501, 1997



Strained layer GaAs

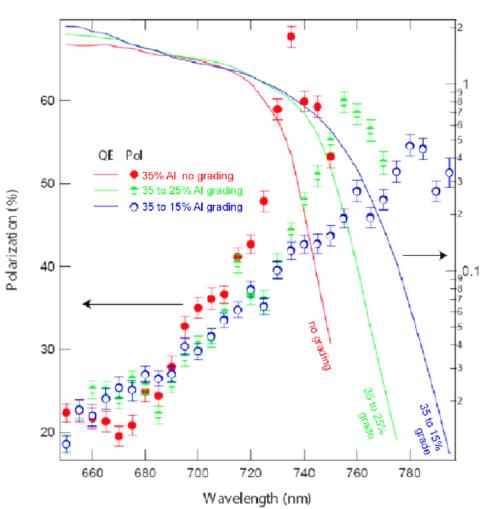
✓ Polarization 75% >> 50% ☺
✓ Strain relaxes in 100 nm layer
✓ QE 0.1%



MOCVD-grown epitaxial spin-polarizer wafer

Maruyama et al., Phys. Rev. B, 46 4261 (1991)

Strained layer superlattice GaAs/GaAsP

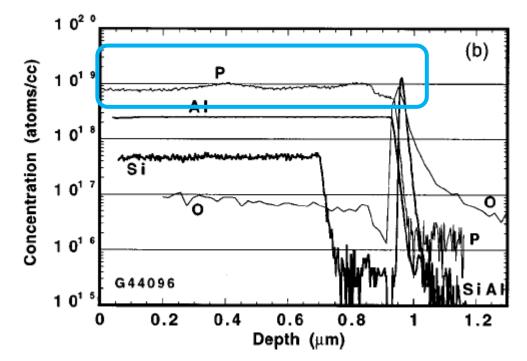


Innovation through SBIR program

- SVT SBIR Partnerships with SLAC or JLab for high polarization photocathodes:
 - -Phase I: 2001, 2005, 2007, 2012, 2013
 - -Phase II: 2002, 2008, 2013, 2014
- Various Superlattice Structures
 - -GaAs/GaAsP
 - -GaAsSb
 - -AlGaAs/GaAs
 - -Distributed Bragg Reflector for high QE

Variations

- Quantum Well thickness
- Barrier thickness
- Strain layer concentration
- Number of periods



AlGaAs/GaAs, A. Moy 2009

Technical Challenges of Growing GaAs/GaAsP using GSMBE

- GSMBE (Gas source MBE) uses crackers for AsH₃ (arsine) and PH₃ (phosphine)
 - -Both gasses Toxic, Flammable
 - -Phosphorus grows on MBE walls
 - Generates phosphine gas & phosphoric acid when venting
 - Absorbs water and has high water vapor pressure when pumped back down
 - Residue cannot be scraped off ignites
 - Careful degassing can solve this
 - Phosphine residue can cause high background in subsequent samples

SIMS of AlGaAs grown after Phosphorus contamination

W.E.Hoke and P.J. Lemonias JVSTB **17** 1999, p. 2009.

SBIR research program lifetime

- SBIR Program Goals include
 - -Stimulate technological innovation
 - –Use small business to meet Federal R/R&D needs
- SBIR Phases
 - Phase I explores the feasibility of innovative concepts with awards up to \$250,000 and 12 months.
 - Phase II is the principal R&D effort, with awards up to \$1,600,000 and 2 years.
 - Phase III: pursue commercial applications of their R&D with non-SBIR/STTR funding.
 - Market for high polarization photocathode material is small
 - Commercialization not (yet?) financially viable

Main Goal: New growth method to restore photocathode supply

- DOE Funding Opportunity 20-2310
 - -CBE (Chemical Beam Epitaxy)
 - Jefferson Lab:
 - -Marcy Stutzman
 - University of California Santa Barbara
 - -Chris Palmstrøm and Aaron Engel
- Investigate Chemical Beam Epitaxy for growing high polarization, strained superlattice photocathodes

MBE, GSMBE, CBE and MOCVD

MBE

Gas Source Molecular Beam Epitaxy

elemental As, P, Ga

- Pressure ~10⁻⁸ • mbar
- Growth rates $\sim 1 \,\mu\text{m/hr}$
- Very precise control

GSMBE

Gas Source Molecular Beam Epitaxy

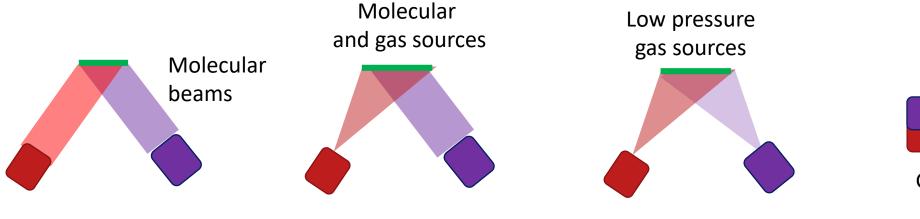
AsH₃, PH₃, elemental Gallium

Used at SVT

CBE

Chemical Beam Epitaxy

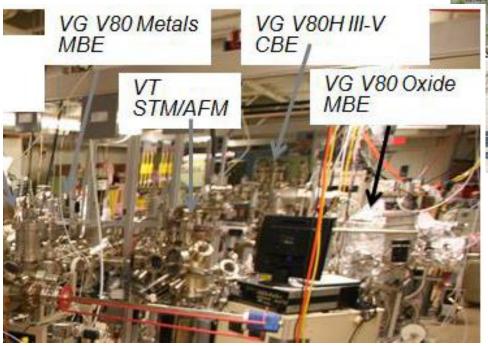
AsH₃, PH₃, triethyl gallium (TEGa) or elemental Gallium


- Pressure <10⁻⁴ mbar
- Growth rates 0.5-1 µm/hr

MOCVD

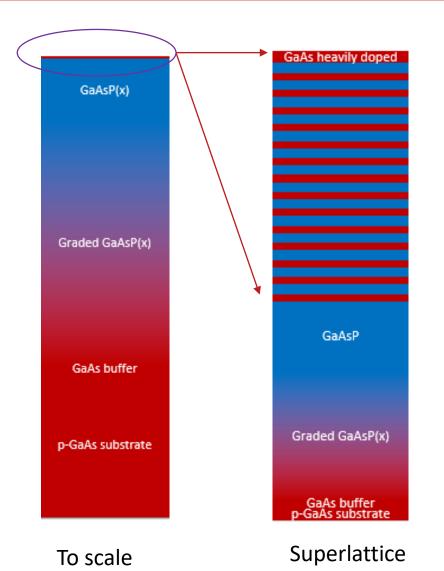
Metal organic chemical vapor deposition

AsH₃, PH₃, trimethylgallium (TMGa)


- Pressures >100 mbar during growth
- Growth Rates 10 µm/hr
- Traditionally difficult to get sharp interfaces

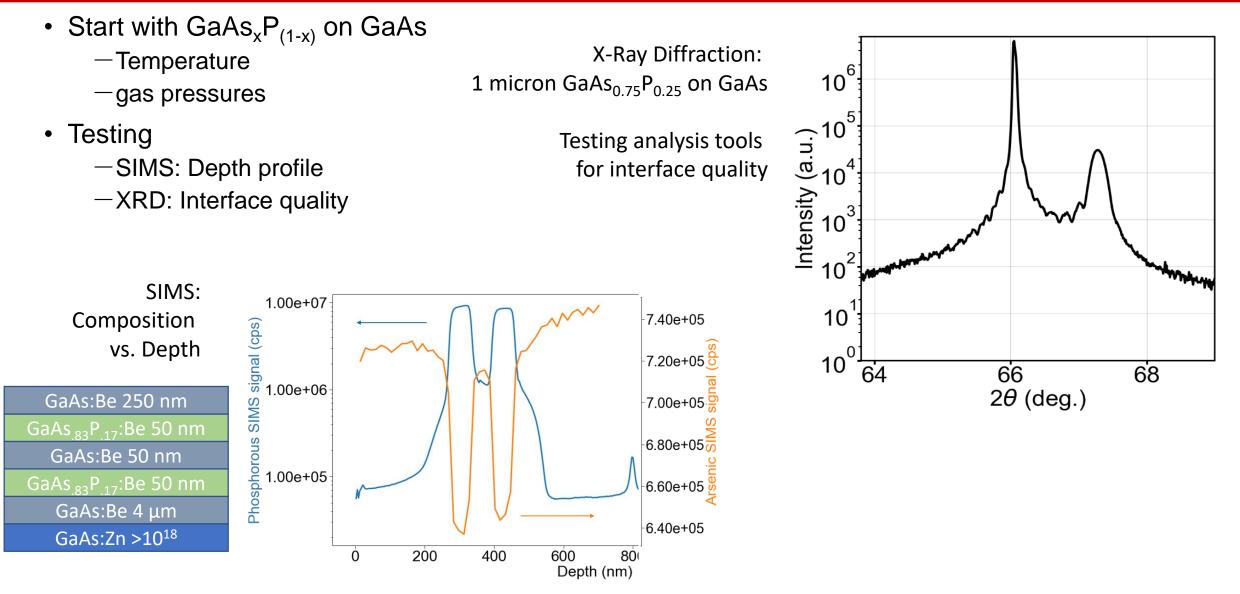
CBE: Photocathode progress

Chris Palmstrøm Group, UCSB


- Aaron Engel, graduate student
- Chemical Beam Epitaxy System

Wafer growth

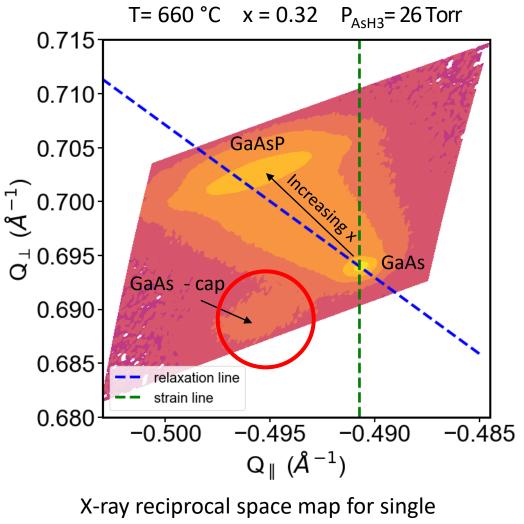
scaled up


- Epitaxial Buffer Layer grown on GaAs
 Graded GaAs to GaAs_(1-x)P_x
 GaAs_(1-x)P_x layer
 Superlattice
- Heavily doped top layer

Parameters to vary

- Substrate Temperature
- Source Temperature/Pressures
- Time
- Grading profile
- Underlying crystal orientation
- Superlattice layer thickness

CBE: Strained Layer growth



CBE: Graded dopant layer growth

- Computerized control developed for GaAs->GaAsP graded layer
 - -Smoothly varying Phosphorous content

GaAs cap(5-10 nm)
GaAsP uniform conc. (1-2 μm)
$GaAs_{1-x}P_x$ graded buffer(2.5 μ m)
p-GaAs substrate

- X-ray Reciprocal space mapping
 - -Plot of lattice spacing during growth
 - -Graded Layer with minimal strain
 - —GaAs layer (5-10 nm) strained: lattice constant that of GaAsP

5-10 nm GaAs layer on GaAsPx

CBE: Photocathode progress

Next Steps

- Triethylgallium and phosphine create high vapor pressure background
 - -Move to elemental Ga source?
 - —Upgrade sample bonding from indium to gallium
- Grow photocathode material to test & test at JLab

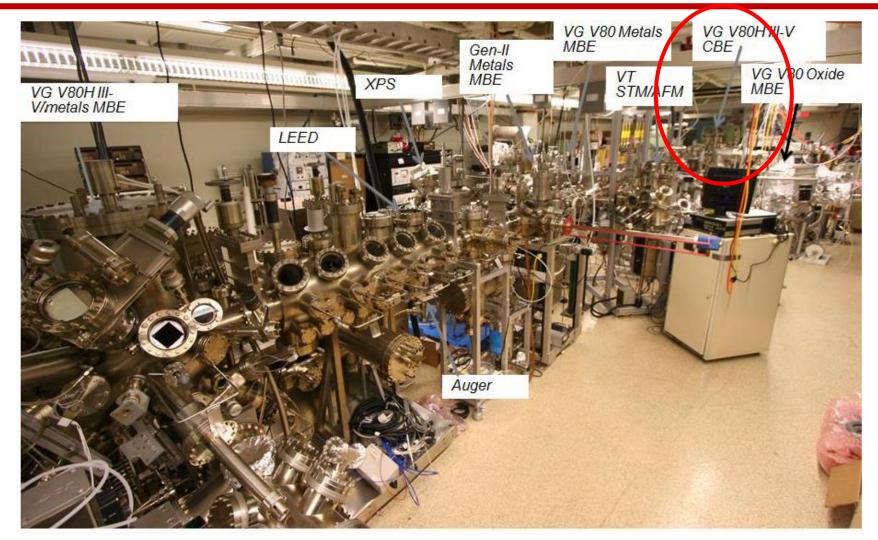


Figure 2 Semiconductor deposition system at Chris Palmstrom's lab at UCSB. The CBE system for the growth of this material is shown at the back and labelled "VG V80H III-V CBE".

Budget Status

- FY20 budget request/received
 - -\$276.2k / **\$129.2k**
 - -\$93k unloaded / \$113.3 loaded to UCSB (vs. \$150k UCSB request)
 - -Project scope reduced and delayed
- FY21 budget request/received
 - -\$276.2k / **\$276.2k**
 - -\$150k unloaded / \$187 loaded to UCSB
 - Graduate student
 - Supervisor
 - Materials and equipment use fees
 - -JLab remainder
 - Design upgraded MicroMott polarimeter
 - Supplies for photocathode tests

	FY20	FY21	Totals
a) Funds allocated	\$126,200	\$276,200	\$402,400
b) Actual costs to date	\$110,414	0	\$110,414

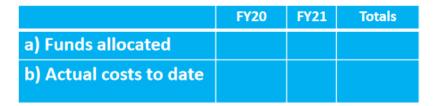
Project Goals

Tasks Year 1	2020 Q1	2020 Q2	2020 Q3	2020 Q4	2021 Q1	2021 Q2	2021 Q3	2021 Q4
JLab: Replace MicroMott Polarimeter CEM								
• JLab: Train Student to use MicroMott (COVID delay)			x	x	x			
JLab: Design upgrade for MicroMott	x	X	x	x	x			
JLab: Build MicroMott Upgrade	x	X	x	x	x	x	x	x
JLab: Polarization and QE measurements				x	x			
JLab: High voltage gun tests								
UCSB: Calibration runs	x							
UCSB: Begin growing graded layers	x	X	x					
UCSB: Grow superlattice layers to characterize thickness and interface	x	х						
UCSB: Characterize the interfaces and composition at UCSB: SIMS and XRD								
UCSB: Send initial material to JLab for testing				x				
UCSB: Optimize for uniformity across wafer								
UCSB: Grow and deliver superlattice photocathodes suitable for use at CEBAF	Green: done Blue: planned							
UCSB: Investigate DBR growth if extra time	x: delay	ed or elin	ninated				x	x
Marcy Stutzman, Annual NP Accelerator R&D and AI/ML PI Meeting, Nov. 30, 2021								on Lab 17

Conclusion

- Project milestone delays and scope reduction due to funding gap
- Graded layer grown successfully
 - -Potentially reverting to solid source for gallium, same growth process same as SVT used
 - -Good morphology and no unwanted strain in graded layer
- Superlattice interfaces characterized
 - -Sharp definition seen in SIMS and XRD analysis
- Current work in progress to grow graded layer and superlattice for first test sample
- Anticipate receiving several high quality photocathodes by end of year

Questions?



Manouchehr's instructions

PI Meeting Presentation Guidelines:

Each presentation should include the following information:

- Description of the project and the current status;
- Main goal of the project for which you received the FY 2020- 121 Accelerator R&D award, and/or Lab Data call for AI/ML award.
- A table showing annual budget and the total received to date (see below);
- A table showing major deliverables and schedule;
- Summary of expenditures by fiscal year (FY):
- > There will be no written report or follow up actions required for this meeting.
- > All talks will be posted on PI Exchange meeting page on NP website.
- > 35 min talks should allow 7 min for Q/A and 30 min talks 5 min for Q/A

M. Farkhondeh, 2021 NP Accelerator R&D and Al/ML PI Meeting, Nov 30, 2021

Marcy Stutzman, Annual NP Accelerator R&D and AI/ML PI Meeting, Nov. 30, 2021

1