

Development of Practical Niobium-Tin Cavities for Ion Linacs

Michael Kelly Accelerator Development Group Leader, Physics Division

Argonne Accelerator Development Group: Gongxiaohui Chen, Ben Guilfoyle, MarkKedzie, Troy Petersen, Tom ReidFermilab Technical Lead: Sam PosenRadiaBeam Technical Lead: Sergey Kutsaev

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting

November 30, 2021

The Present Paradigm for CW Accelerators like ATLAS

Modern linear accelerators based on cavities fabricated from high purity Nb

Motivation for this work

Low-beta cryomodule with 100 MHz cavities are large, module cost of order ~\$10M in low quantity

- Goal: Transformational cost reductions
- Higher gradient? Niobium is near limits; and even with new materials, improvements difficult due to field emission (dirt)
- Future ATLAS upgrades, applications like medical isotopes much more attractive if \$↓

2019 ANL/FNAL half-wave cryomodule for PIP-II

2014 ATLAS Energy and Intensity Upgrade Cryomodule

2009 ATLAS Energy

Upgrade Cryomodule

Main goal of the project

Demonstration of high-frequency ion linac cavity from Nb₃Sn

- A foundationally new approach to the design, fabrication and operation of ion linear accelerators
- Ion linacs several times smaller, cheaper and less complex than today's niobium based accelerators
 - Implications of successful niobium-tin are different than for elliptical cavities
 - 1. "2 Kelvin" performance at 4.5 Kelvin is one advantage in terms of cryogenics (much smaller helium refrigerators or cryocoolers)
 - However, for ion linacs, the combination of negligible (BCS) surface resistance (RF losses), while simultaneously using higher cavity frequency by 2-4 times, can be used to achieve a transformational reduction in cavity, cryomodule, subsystem costs

New 218 MHz QWR and existing ATLAS 72 MHz

cavity

Annual budget and the total received to date

	FY21 (\$)	FY22 (\$)	Totals (\$)
a) Funds allocated	598,185	598,185*	1,196,370
b) Actual costs to date	444,738	172,904	617,642

*Based on planned FY22 RadiaBeam invoices of \$80K

Major Deliverables and Schedule

	1st Qu	arter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
1. Parametric Studies in CST	ANL								
2. ANSYS Analysis	Rad	diaBeam							
3. Cavity Development and Fabrication				Dev	velopment and Fabri	ication			
3.1 Niobium and Jacket Fab Plan		ANL							
3.2 Material Procurement			ANI						
3.3 Design/Build Dies			ANL						
3.4 Fabricate Aluminum Test Parts				ANL					
3.5 Fabricate Niobium Parts/Cavities					ANL				
3.6 Fabricate Parts/Install He Jacket							ANL		
4. Design Furnace Hot Zone Parts					Furna	ce and Hot Zone	t was to be was to be was to be	2010 - 0 0 2010	
4.1 Fabricate Tin Source				FNAL					
4.2 Fabricate Flange Covers				FI	NAL				
4.3 Perform Nb3Sn Coating (possible re-coat)							FNAL	FNAL	
5. Pneumatic Slow Tuner System			Pne	eumatic Slow Tuner					
5.1 Design Slow Tuner Hardware		Radia	Beam						
5.2 Fabricate Slow Tuner Hardware				RadiaBea	ım				
6. Cleaning and Chemistry						C	leaning and Chemist	ry	
6.1 Initial Bare Niobium Cavity						ANL			
6.2 Before Tin Coating									
6.3 After Tin Coating									
6.4 After Jacketing									
7. Cavity Testing							Cavity Testin	g	
7.1 Install Slow Cooldown Systems at ANL						ANL			
7.2 Test Uncoated Nb Cavities						ANL			
7.3 Test Nb3Sn Coated Cavities							FNAL ANL	-	
7.4 Test Final Jacketed Cavities									ANL
8.0 Design Stand-alone Cryocooler							RadiaBea	Im	
9.0 Project Reporting and Float									Reporting/Float

Technical Description and Current Status

'Why use Nb₃Sn and what does it offer for a quarterwave?'

 Present state: Ion linacs are built from large ~1+ meter long niobium cavities

- Small (high frequency) niobium cavities would have very high losses into helium (solid red)
- Cavities from niobium-tin can be simultaneously small (>200 MHz) and have low RF losses (solid blue)

cavity module

This work has been going on for 10+ years, what's to show? **Results of Nb₃Sn cavities coated at FNAL**

Associated surface resistance before/after coating

Cavity quality factors before and after coating

Message: Fermilab and others are producing Nb₃Sn cavities with useful performance

60

70

80

Final Electromagnetic Design

Deliverable 1

Includes all features, including steering correction, needed for useful cavity

Parameter	Value	Unit
Frequency (as simulated)	217.9	MHz
Beta (peak)	0.12	
Planned Voltage	1.3	MV
R/Q	445	Ohm
G	44	Ohm
E _{PEAK}	45	MV/m
B _{PEAK}	54	mT
P _{dissipated} @ Q=1e10	0.39	Watts

Reasonably achievable goal

5 degree tilt on drift-tube faces produces transverse electric field that cancels on-axis magnetic field steering

Ş

Mechanical Analysis

Similar as for standard niobium, combination of helium pressure and mechanical tuner

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 30

Argonne

NATIONAL LABORATORY

Stresses are tolerable and with a large useable tuning range

11

Plan for Coating a Quarter-wave Cavity

Nb chamber 20" Diam x 82" Long

Nb₃Sn coating furnace at Fermilab

Hardware design for quarter-wave cavity in furnace (most recent plan will use two Sn sources, post-coating optical/visual inspection good preliminary indicator of success)

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 30

Cavity Development and Fabrication

No present U.S. vendors for finished niobium cavities

- Situation: AES out of business, Roark has some, but not all capabilities, European vendors costly/slow
- Approach: In the tradition of ANL development of US partners for accelerators (Meyer Tool, Sciaky,

Andersen Dahlen) we are working with a new U.S. vendor for niobium cavity parts

Deliverable 3

Cavity Development and Fabrication

Deliverable 3

Step-by-step fabrication plan by postdoc Gongxiaohui Chen

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 30

NATIONAL LABORATORY

Cavity bottom dome hydroforming

(Only niobium hydroforming in U.S. today)

2 DOME (HYDROFORMING)

The dome of the Nb3Sn cavity was made by using the hydrofroming technique, and was fabricated at a local machine shop- Stuecklen Manufacturing Co. (10020 Pacific Ave, Franklin Park, IL 60131).

The following subsections demonstrate the detailed forming process of the cavity dome. A 12" by 12" square Nb blank was prepared for the dome fabrication.

2.1 STEP 1

ANL-designed aluminum hydroforming dies

Figure 2: Step 1 forming.

2.2 STEP 2

Figure 3: Step 2 forming.

3

Figure 4: Step 3 coining.

'low RRR' test (left), production parts (middle), test dome w/ ports (right) – September 2021

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 30

Deliverable 3

Cavity toroid hydroforming

3 TOROID (HYDROFORMING)

The toroid of the Nb3Sn was also hydroformed by Stuecklen. A 12" by 12" sqaure Nb blank(thickness of 0.125") was used for the toroid fabrication.**3.3** STEP 3

3.1 STEP 1

In Step 1, the steel die was provided by Stuecklen.

Figure 5: Step 1 forming.

Deliverable 3

STEEL BACKING PLATE

Figure 7: Step 3 forming. Note: the nub shown in the old design follows the profile of the nub used in the dome. The new design was adopted in the final toroid die.

Cavity toroid hydroforming

3.5 STEP 5

3.4 STEP 4

Figure 8: Step 4 forming. Note: the Al die was modified later at ANL Central Shops on 9/28/2021

Deliverable 3

Figure 9: Step 5 coining.

Aluminum, low RRR and final niobium toroids (left to right) – November 2021

Cavity Outer Housing Deep Drawing

Deliverable 3

A 'simple' half cylinder with a re-entrant nose is easier by this method

This is our present activity as of Nov./Dec. 2021

New Argonne Furnace

Deliverable 3

Furnace external

Key missing component from ANL cavity processing facility

- Present workflow requires large number of SRF cavity shipments (100-200 per year between ANL, FRIB, Fermilab)
- Furnace cost \$1.05M, support infrastructure \$400K
 - Support from ANL (2/3) and direct DOE/SC (1/3)
- Hydrogen degassing required for all of modern niobium cavities
- Future for next generation technologies, nitrogen infusion, Nb₃Sn
- Acc. group installed new compressor for helium recovery; providing expertise on helium purifier

New ANL furnace will be ready for hydrogen degassing

6 Month Look Ahead

- RadiaBeam has received cavity and tuner models and will design tuner hardware for the new cavity Deliverable 5
- However, RadiaBeam, rather than fabricating the tuner now, will focus on helping ANL finish the cavities (ports and niobium center conductor) Deliverable 3 →
- Fermilab will fabricate niobium support frame and port/flange covers required for the coating process Deliverable 4
- Argonne will complete the cavity housing, center conductor and electron beam weld niobium assembly and perform electropolishing <u>Deliverables 4, 6</u>
- The team is working together on the test plan (bare cavity, then coated cavity)
 Deliverable 7

Thank you to collaborators and DOE/SC NP

ASME Ustamped helium vessel built with collider funds 2010

Niobium port

with NbTi flange

End of QWR center conductor

Backup

Backup

2021 NP Accelerator R&D and AI-ML PI Exchange Meeting, Tuesday November 30