Strong hadron cooling with MBEC for EIC

F. Willeke, <u>E. Wang (</u>BNL)

G. Stupakov (SLAC)

Y. Zhang (JLAB)

A. Zholents (ANL)

Electron Ion Collider – eRHIC

NP R&D PI meeting 2020

BROOKHAVE

Project description

- We aim on developing theory of micro-bunched strong hadron cooling, simulation tools, the layout for EIC and preparation for experimental demonstration.
- Status: At the second year, we estimated three energy cases for EIC CEC cooler. More theoretical works have been published. Cooling simulation code development is in progress. Increasing plasma frequency by wiggler experiment has been carried out. More detailed injector and ERL studies.
- Monthly collaboration meetings to exchange the progress and discussion. Established cooling design team for EIC.
- This project is tightly aligned with the 2017 Jones EIC R&D task row #2, #3 with panel sub-priority A.

Budget summary

		FY 2018	FY 2019	FY 2020
SLAC	Funds allocated	200,000	382,994	165,339
	Actual costs to date	17,056	217,605	165,339
ANL	Funds allocated	130,000	130,000	260,000
	Actual costs to date	11,552	55,770	253,819
JLAB	Funds allocated	226,000	226,000	452,000
	Actual costs to date	3,626	260,199	437,740
BNL	Funds allocated	300,000	300,000	594,204
	Actual costs to date	0	5,796	119,097

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

.

Outlines

- Summary of FY 2018-2019
- Progress of FY 2020
 - SLAC has developed theoretical formulas to describe hadron evolution and diffusion.
 - ➢Jlab has provided ERL design assessment and studied ERL Arc.
 - ➢BNL has worked on cooling code including IBS. And has addressed some of Jlab's recommendation.
 - ➢ANL has carried out an experiment at AWA to speed up conversion of a beam density modulation to energy modulation by a wiggler.

Why need cooling

Strong hadron cooling with modest cooling rate of **1h**⁻¹, counteracts IBS

→ EIC design luminosity $L = 1 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ at Ecm=105 GeV is achieved & full range of EIC physics can be exploited.

→ EIC design includes strong hadron cooling

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

Summary of FY 2018-2019

A 1D theoretical model that describes the MBEC process has been developed.

Proton energy [GeV]	275
Electron energy [MeV]	150
Electron relative energy spread	$1 imes 10^{-1}$
Electron beam charge [nC]	1
Repetition rate [MHz]	112
RMS beam size [mm]	0.7
Modulator and cooler lengths [m]	40
Average electron beam current [A]	0.1
Cooling time [min]	50

We have developed preconceptual design of EIC cooling layout including two plasma amplification stages cooling channel, ERL and injector.

Collider – eRHIC

Using the wiggler in amplification section to shorten the drift length has been proposed.

New MBEC kinetic equation

• The hadron distribution function F(J, t) satisfies a kinetic equation

- Theoretical formulas are derived for the diffusion and cooling terms
- The diffusion and cooling functions depend on the various system parameters (chicane strengths, plasma lengths, etc).
- The diffusion term itself depends on the distribution function, via the peak current ratio
- Computer code was developed for numerical solution of the kinetic equation

NP R&D meeting 2020

Electron Ion Collider - eRHIC

An analytically solvable case was used to test the numerical algorithm

ATIONAL

ELERATOR

RORATORY

EIC run for 15 m stage with IBS included

Cooling can compensate for IBS, leading to a sharper proton current profile.

Main conclusion: cooling for the proton beam is accompanied by bunch compression (and peak current increase). Moreover, cooling appears to be sufficient to counteract IBS.

8

Publications related to MBEC studies at SLAC in 2018/2020

- 1. G. Stupakov, Cooling rate for microbunched electron cooling without amplification, PRAB, 21, 114402 (2018)
- 2. G. Stupakov, P. Baxevanis, Microbunched electron cooling with amplification cascades, PRAB, 22, 034401, 2019
- 3. P. Baxevanis and G. Stupakov, Transverse dynamics considerations for microbunched electron cooling, PRAB 22, 081003 (2019).
- 4. G. Stupakov, Microbunched Electron Cooling (MBEC) for Future Electron-Ion Colliders, in HB2018, paper WEA2WA02, 2018.
- 5. G. Stupakov, P. Baxevanis, 3D Theory of Microbunched Electron Cooling for Electron-Ion Colliders, IPAC19, p. 814, 2019.
- 6. P. Baxevanis and G. Stupakov, Tolerances on energy deviation in microbunched electron cooling, NAPAC19, paper WEPLH16, 2019.
- 7. P. Baxevanis and G. Stupakov, Diffusion and nonlinear plasma effects in microbunched electron cooling, NAPAC19, paper WEPLH17, 2019.
- 8. P. Baxevanis and G. Stupakov, Transverse dynamics considerations for microbunched electron cooling, PRAB 22, 081003 (7 2019).
- 9. P. Baxevanis and G. Stupakov, Hadron beam evolution in microbunched electron cooling, PRAB 23, 111001 (2020).

NATIONAL ACCELERATOR LABORATORY

CeC ERL Design Assessment

- Jlab reviewed pCDR cooler ERL design.
- Beam requirements at nominal operating point are clear
- System design incomplete but progressing
 - <u>Injector</u>: design is quite detailed and increasingly well optimized; appears to provide required beam quality
 - <u>Linac</u>: design is detailed and positioned for integration with injector and rest of system; appears to deliver required beam quality
 - <u>Recirculator</u>: design concept is clear and transport from linac to cooling system is detailed; notionally provides properly configured beam
 - return/recovery transport incomplete

Absent full layout, simulation-based beam dynamics validation is TBD

Observations/Recommendations

- Return/recovery transport very high priority
 - Return arc designs being studied
- Operational requirements (tuning, stability, reproducibility, beam property tolerances, ...) need clarification
 - Machine tuning requirements and ranges not specified
 - Hardware "knobs" not designated
- There is no start-to-end (S2E) model; this is necessary to
 - Validate beam dynamics performance
 - BBU, CSR, mBI, ... not yet studied in detail
 - Space charge effects explored through accelerating pass of linac only
 - Assess impact of errors
 - Generate hardware specifications
 - Simulate operational processes
- **RF drive requirements** unclear (see Powers/Tennant, ERL2007)
- Halo is a major problem at high current; provisions for halo control/mitigation are needed

11

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

Bates Recirculation Arc Studies

Preliminary Studies

<u>Initial study</u>:

- Determine if Bates/"inverted" Bates bend would fit in 2-3 m wide footprint
- Compare properties/performance of the two geometries
- Conclusion: Bates geometries potentially offer suitable footprint and performance (JLAB-TN-20-024)

Follow-on study:

- Explore performance/sensitivity in greater detail over larger range of parameters by implementing chromatic correction/comparing several solutions
- Conclusion: the same Bates bends offer potential size and dynamics to support recovery transport application (JLAB-TN-20-032)

Work Forward

14

- Need to
 - Open up parameter space
 - Explore dependences on reverse bend angles
 - Optimize solutions by modulating entry/exit angles
 - This may hold particular promise for inverted Bates geometries, particularly if focusing (pole face rotations) are introduced on the π -bends (at right)
 - Decide if detailed design is warranted

Cooling time optimization

The analytical formulas and optimization methods are encoded in Python.(Panos PRAB 22 081003(2019) including transverse cooling, diffusion and evaluate saturation)

- Using the realistic tunnel geometry parameters: Total IR2 size, hadron energy, charge, bunch length, emittance and energy spread, electron charge, emittance and energy spread
- Maximum the transverse cooling rate by varying hadron dispersion, phase advance, plasma stage length and hadron, electron R56
- Fine tune the hadron dispersion to get same longitudinal and horizontal cooling rate
- Scan the plasma stage length, check the saturation rate.

EIC CeC parameters

		Value		
e-beam normalized emittance [mm-mrad]	2.8			
e-beam energy spread	10-4			
Average electron beam current [mA]	100			
e-beam bunch charge [nC]	1			
e-beam energy [MeV]	22.3	54.1	150	
Electron R56 [cm]	1.26	0.652	0.68	
Hadron R56 [cm]	0.3	0.15	0.16	
Dispersion [m]	0.33	0.21	0.442	
Amplification length*[m]	46	44	96	
Modulator, Kicker length [m]	30	40	50	
Cooling time [min]	91	46	38	
Two amplification section	ıs.	* Assume	e same beta fu	nction
BROOKHAVEN NATIONAL LABORATORY		, NI	P R&D meeting	g 2020

LABORATORY

NP R&D meeting 2020 Electron Ion Collider – eRHIC

DC gun + SRF booster Injector

ERL_injector and Linac

R56 canceled bending

R56 canceled along the cooling stage

Two stages amplification channel with R56

• The longitudinal space charge causes longitudinal kick. The microbunches slips due to R56 of drift and chicanes

Energy	R56 drift+Chicane	Slips at one sigma	Slips using dogleg/chicane
150 MeV	-2.3mm -20.4 mm	175 nm 🗸	-35 nm 🗸
54.1 MeV	-17 mm -19.56 mm	3.8 um ?	1.57 um 🗸
22.3 MeV	-100 mm -37.8 mm	105 um 🗙	1.9 um 🗸

• Solution:

We use two dogleg and one chicane to compensate R56.

R₅₆1*R₅₆2*R₅₆3 < 0(negative means higher momentum particles move forward)

20

E. Wang # EIC-ADD-TN-011

NP R&D meeting 2020 Electron Ion Collider – eRHIC

Multi-Turn Simulation

- Developing a C++ cooling tracking code
- Do turn-by-turn tracking of hadrons, applying kicks from CeC process as well as IBS and synchrotron motion to verify achievable cooling rates.
- Can also simulate the electron beam directly to determine the regime in which saturation of electron beam becomes important.
- Will optimize parameters, include transverse motion, and study the effects of noise in the electron beam

Saturation Studies

- Model proton macroparticles and a background electron fluid, with realistic shot noise
- Simulate the plasma dynamics through the cooling section to understand the nonlinear effects in the cooling process

W.Bergan

NP R&D meeting 2020 Electron Ion Collider – eRHIC

Plasma frequency in the beam moving in vacuum and in wiggler

Conversion of a beam density modulation to energy modulation dramatically speeds up in a wiggler with K>>1

$$\omega_{p_{(wiggler)}} \simeq \omega_{p_{(drift)}} \frac{K}{\sqrt{2}}$$

Comparing plasma frequencies in the electron beam propagating the wiggler and a drift^{*)}

*) G. Geloni, E. Saldin, E. Schnedmiller, M. Yurkov, Preprint DESY 07-087, June 2007

A proof-of-principle experiment at Argonne Wakefield Accelerator (AWA) facility

S. Lee, E. McCarthy, M. Qian, E. Trakhtenberg, I. Vasserman, J. Xu prepared the wiggler including the design of a strong back, wiggler assembly, magnetic measurement and tuning; S. Doran designed the wiggler support and the vacuum chamber, assembled the beamline and installed the wiggler; G. Ha, J. Seok conducted the experiment and analyzed the data; A. Adelmann, A. Alba, R. Bellotti carried out the simulations and analyzed the data; J. Power provided the oversight of the experiment and data analysis; A. Zholents proposed the experiment and led the activity.

Beam parameters and experimental setup

24

Beam energy = 45.4 MeV, bunch charge = 300 pC

Beam longitudinal phase space upstream of the wiggler

Reconstruction from measurements

Section of AWA beamline used in the experiment. Wiggler was assembled using spare magnetic structures and a new strong back frame and a new vacuum chamber. Wiggler period = 8.5 cm, K=10.8

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

Experimental result: observed space charge and radiation interactions of electrons

Measured (1) wiggler impact on the beam longitudinal phase space and compared it with simulations (2) using round and elliptical beams

Space charge and radiation interactions of electrons in the wiggler were modeled using OPAL+ MITHRA

A. Adelmann et al., OPAL a Versatile Tool for Charged Particle Accelerator Simulations, 2019, arXiv:1905.06654; A. Fallahi, A. Yahaghi, and F. Kārtner, MITHRA 1.0: A Full-Wave Simulation Tool for Free Electron Lasers, Computer Physics Communications, 228, pp.192-208, 2018. NP R&D meeting 2020

25

Electron Ion Collider – eRHIC

Experimental results cont'd

Beam energy distribution measured with wiggler rolled out of the beam line (blue colored histogram) and with wiggler rolled on the beam line (yellow colored histogram) Comparing wiggler impact on round (blue colored histogram) and elliptical beams (yellow colored histogram)

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

Summary

- We have evaluated three energy cases for EIC CEC cooler.
- Theoretical formulas has been derived for the diffusion and cooling terms. More theoretical works have been published.
- Cooling simulation C++ code development is in progress. The code includes IBS, incoherent heating due to wakes of nearby protons and e- noise and synchrotron motion.
- The pCDR ERL has been assessed. More detail injector, arc, amplification R56 and ERL design have been studied.
- Increasing plasma frequency by wiggler experiment has been carried out.

NP R&D meeting 2020 Electron Ion Collider – eRHIC

Thanks for your attention!

Acknowledgements:

Coherent electron cooling with ERL electron beam and multi-stage micro-bunching amplifier FOA 19 B&R #KB0202011

Collaborators:

ANL: A. Zholents, G. Ha, J. Power, J. Xu JLab : S. Benson, D. Douglas and Y. Zhang SLAC: G. Stupakov and P. Baxevanis BNL: F. Willeke, W. Bergan, M. Blaskiewics, E. Wang

NP R&D meeting 2020 Electron Ion Collider – eRHIC

Micro-bunched cooling

Drift quarter of electron beam plasma wavelength, could be multiple stages.

Advantages:

- Very broadband (~THz) amplifier
- Micro-bunching instability was well studied.
- Significant gain without saturation

High cooling rates

NP R&D meeting 2020 Electron Ion Collider. – eRHIC

Chromatic properties

Electron Ion Collider – eRHIC

Transverse Cooling

 Work is ongoing to add transverse dynamics to the cooling code

Core bunch and full bunch w cooling on/off

FIG. 6. Upper panel: hadron distribution function at selected times during the cooling process. Lower panel: hadron peak current (blue curve), total longitudinal emittance (dashed brown curve) and core part (95%) emittance (solid brown curve) versus time. The data shown compare and contrast the cases with and without cooling.

Electron Ion Collider – eRHIC

Injector and Merger

Micro-bunched electron cooling (MBEC) for EIC

- Electrons of the cooler beam with $\gamma_e = \gamma_h$ first interact with the hadron beam in a short modulator where their energy is perturbed by hadrons. The energy perturbations in the electron beam are then converted to density modulation in the chicane $R_{56}^{(e)}$. The longitudinal electric field of these density perturbations acts back on hadrons in the kicker. High-energy hadrons passing through $R_{56}^{(h)}$ move ahead and get a negative kick, low-energy move back and get a positive kick. Over many passages, this decreases the energy spread of the hadron beam.
- This scheme (a) is typically too weak to provide an adequate cooling and should be supplemented by an amplification of the signal in the electron beam in one (b) or two (c) stages (D. Ratner, PRL, 111, 084802 (2013)).

ABORATORY

NP R&D meeting 2020 Electron Ion Collider – eRHIC