High Bandwidth Feedback Systems for a High Luminosity EIC

R. Rimmer Jefferson Lab, Newport News, VA

Z. Conway

BNL, Upton, NY

Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding

2020 NP Accelerator R&D PI Exchange Meeting December 2, 2020

- Project description
 - This proposal is to perform the key research and development required to make practical the production of transverse and longitudinal feedback systems capable of providing the high-bandwidth high-voltage feedback signals required for the future 3 A 12 GeV electron collider ring at the JLAB EIC (JLEIC). Having a large operating bandwidth, lower HOM impedance and better power handling will be the focus of these developments. This will create a robust solution which can be easily adapted to future JLEIC accelerator parameter changes and make developments here adaptable to different accelerators, like the Brookhaven National Laboratory (BNL) electron Relativistic Heavy-ion Collider (eRHiC).
- Project status
 - -Closed
- Main goal
 - -Develop transverse feedback system and kickers for an EIC
- Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding

Progress report

• Prior FY17 project completed

-(including a subcontract to DimTel to do high level system architecture)

- JLEIC impedance budget progressed up to pre-CDR-100
- Concept for longitudinal kicker
- Initial EM model of transverse kicker (based on ANL stripline)
- Half-time postdoc started
- Resource issues at ANL, PI moved to BNL

R&D Highlights: JLEIC Impedance analysis

- Ongoing refinement as designs matured
- High-count small impedances (e.g. bellows), and one-off high impedances (e.g. IR)
- Scale from other machines where undefined

e-ring

Component Counts (Courtesy to T. Michalski)

RF valves

IR chamber

Feedback kickers

Elements	e-Ring	• Impedance Estimation (Courtesy to K. Deitrick)							
Elements	e-king	Broadband	Reference:	Reference:					
Flanges (pairs)	1215	Impedance	PEP-II	SUPERKEKB					
BPMs	405	<i>L</i> [nH]	99.2	28.6					
Vacuum ports	480								
Bellows	480	$ Z_{\parallel}/n $ [Ω]	0.09	0.02	$\leq 0.1 \Omega$				
Vacuum Valves	23	1 117 1							
Tapers	6	$k_{\parallel} [V/pC]$	7.7	19					
Collimators	16								
DIP screen slots	470	$\left Z_{\perp}\right $ [k Ω/m]	60	13 ≤	$\frac{0.1 \text{ M}\Omega}{m}$				
Crab cavities	2								
RF cavities	32	• JLEIC plans to	o use PEP-II vac	uum systems					

JLEIC plans to use PEP-II vacuum systems

 Effective impedance is bunch length dependent

i-ring

Component Counts (Courtesy to T. Michalski)

1

•	-	-				
Elements	p-Ring	• In	npedance	Estimatio	on (Courtout	
Flanges (pairs)	234		Broadband Impedance	Reference: PEP-II	(Courtesy to K. Deitrick	
BPMs Vacuum ports	214 92		<i>L</i> [nH]	97.6		
Bellows Vacuum Valves	559 14		$\left Z_{_{\parallel}}/n\right $ [Ω]	0.08	≤ 0.1 Ω	
Tapers Collimators	6 16		k_{\parallel} [V/pC]	8.6		
DIP screen slots Crab cavities	- 8		$\left Z_{\perp}\right $ [k Ω/m]	80	$\leq 0.1 \text{ M}\Omega/$	' m
RF cavities RF cavity bellows	40 40			ength (1.0cm) a cedented for th		
RF valves Feedback kickers	24 2		ams in existing hch length vari	ion rings es through the	whole	

bunch formation process

R. Li

68

2

1

Roman Pot

IR chamber

Narrowband Impedance optimization: JLEIC ion-Ring cavity and IR (F. Marhauser)

2020 NP Accelerator R&D PI Exchange Meeting

R&D Highlights: Feedback System architecture*

- Maximum bunch frequency = F_{RF} = 476.3 MHz
- Transverse feedback (baseband)
 ~DC to F_{RF}/2 = ~DC to 238 MHz
- Longitudinal Feedback (damped cavity)
 - -Center frequency = $n^*F_{RF} F_{bunch}/4$,
 - -e.g. 1547 MHz, bandwidth \ge 238 MHz

*"Transverse bunch-by-bunch options for JLEIC electron ring", report, Dmitry Teytelman, 2019

 $1.5 \ \mathrm{\mu rad} \ \mathrm{mm}^{-1}$

250 W

700 W

2020 NP Accelerator R&D PI Exchange Meeting

Power requirement with 0.5 mm excitation, 10 k Ω kicker R_{\perp}

Feedback gain for optimal damping

Power requirement at 5 GeV

R&D Highlights: Transverse kicker

- Based on APS-U injector stripline design
 - -Better thermal properties compared to PEP-II style
 - -More efficient, more robust feedthroughs
 - $\ensuremath{\mathsf{Tested}}$ with beam at ANL and NSLS-II
- Scaled to JLEIC frequency/aperture
- Feedthrough matching needed optimization

"Preliminary Test Results of a Prototype Fast Kicker for APS MBA Upgrade," C. Yao et al., NA-PAC2016, WEPOB24, Pg. 950 (2016)

2020 NP Accelerator R&D PI Exchange Meeting

R&D Highlights: Longitudinal Feedback Kickers

- ANL has developed a 1.027 GHz, 59 MHz bandwidth, R/Q = V²/2P = 160 Ω, longitudinal feedback kicker for the APS-U electron storage ring. The APS-U longitudinal feedback system is designed to deliver > 4 kV kick distributed over two longitudinal feedback kickers.
- The APS-U storage ring will operate with a 200 mA 6 GeV electron beam. This beam current is much less than the expected JLEIC electron storage ring operating level of 3 A.

LFB KICKER CONCEPT Background

- Chose a waveguide over-damped resonator for the APS-U longitudinal feedback (LFB) kicker:
 - Used at ALS, BESSY-II, DIAMOND, <u>Duke</u>, DAΦNE, HIGS, HLS-II, KEK-B, PEP-II, etc,
 - High shunt impedance,
 - Low HOM shunt impedances,
 - High power handling, and
 - Straightforward fabrication.
- APS-U LFB kicker is much more reentrant for high shunt impedance.

EIC Accelerator Collaboration Meeting 2018

W.Z. Wu et al., NIMA, Vol. 632, # 1, 11 March 2011, Pg. 32-42

Z. Conway

A Waveguide Overloaded Cavity as Longitudinal Kicker for the DAFNE Bunch-by-bunch Feedback System," A. Gallo et al., International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995.

Present status:

- After 2019 PI meeting attempted to restructure the work with PI at BNL but...
- After 2020 EIC site selection agreed to terminate the project
- JLab funds reprogrammed for EIC*
- ANL funds returned to DOE
- Lessons learned will be useful for EIC
- Actual systems will be developed as/when needed on project

*Continued to support 50% of postdoc to end of FY20

Total expenditures (FY18-19 funds)

ID #	Item/Task	Baseline Total Cost	Costed & Committed	Estimate To Complete	Estimated Total Cost
		(AY\$)	(AY\$)	(AY\$)	(AY\$)
JLCFF2	Fast Feedback Sys&Kicker2	\$8,000	\$7,834	\$0	\$7,834
JLECFF	Fast Feedback Sys&Kickers	\$448,000	\$89,846	\$0	\$89,846
	Totals:	\$456,000	\$97,680	\$0	\$97,680*

*half post-doc for FY19 and 20

8	Item/Task	Baseline Total Cost	Costed & Committed	Estimate To Complete	Estimated Total Cost	
		(AY\$)	(AY\$)	(AY\$)	(AY\$)	
ANL	Fast Feedback Sys&Kickers	\$200,000	\$300	\$0	\$300	

Deliverables and Schedule

 Experimental deliverables were shifted by more than a year due to delay in system parameter definition* and EM/ mechanical design

		FY'18			FY'19			FY'20				
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
JLab: Provide e-ring parameters			\rightarrow	✓	✓	√	✓	✓				
ANL: Preliminary model of transverse kicker			\rightarrow	✓	\rightarrow	\rightarrow	\rightarrow	✓				
JLab: Impedance and instability studies				✓	✓	✓	✓	✓				
ANL: Mechanical design of transverse kicker				\rightarrow	\rightarrow	\rightarrow	\rightarrow	→	x			
ANL: preliminary design of longitudinal kicker				\rightarrow	✓	\rightarrow	\rightarrow	→	x			
Lab: Survey of industrially available digital electronics					✓	✓	✓	✓				
ANL: Drawings of transverse kicker/impedance estimates					\rightarrow	\rightarrow	\rightarrow	→	x			
JLab: Ring impedances, instabilities and requirements						\rightarrow	✓	✓	x			
ANL: Tolerance study trans.; Preliminary model of long. kicker						\rightarrow	→	✓				18:00
ILab: Calculate current limit with feedback							✓	✓		24		
ANL: HOM calcs. Parts ordered for transverse kicker prototype							\rightarrow	→	x		1	28
JLab: study effect of FB on polarization lifetime								\rightarrow	х			300
ANL: Assembly of kicker, measure, ship to JLab								→	x			

2020 NP Accelerator R&D PI Exchange Meeting

Back up

2029 NP Accelerator R&D PI Exchange Meeting

Original FOA proposal

Title:

- High Bandwidth Beam Feedback Systems for a High Luminosity EIC
 Institution:
- Argonne National Laboratory

Lead Principal Investigator (PI):

• Dr. Zachary Conway

JLab Co-Pl

• Bob Rimmer

Other personnel:

• Dr. H.-Ulrich Wienands

Collaborative Proposal Information								
	Names	Institution	Year 1 Budget	Year 2 Budget	Year 3 Budget	Funded		
Lead PI	Zachary Conway	Argonne national Lab	\$400,000	\$400,000		\$200k		
Co-PI	Robert Rimmer	Jefferson Lab	\$227,464	\$228,079		\$218k		
Total			\$627,464	\$628,079		\$418		

requested

2018 milestones (funded)

Q3 FY2018 Milestones:

- (JLAB) Table of JLEIC electron storage ring parameters; and
- (ANL) Preliminary model of the transverse kicker for single axis beam deflection.
- Q4 FY2018 Milestones:
- (JLAB) JLEIC storage ring preliminary impedance estimate;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.

2019 milestones (funded)

- Q1 FY2019 Milestones:
- (ANL) Drawings suitable for fabrication of the transverse kicker;
- (JLAB) Initial results from the survey of industrially available digital electronics; and
- (ANL) First order estimates of the monopole impedance spectrum for the transverse and longitudinal kickers
- Q2 FY2019 Milestones:
- (JLAB) JLEIC storage ring impedance;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.
- Q3 FY2019 Milestones:
- (ANL) All parts required for the transverse fast kicker ordered and first parts received;
- (JLAB) Calculation of the JLEIC beam current limit with transverse and longitudinal feedback; and
- (ANL) Calculation results for the dipole mode shunt impedance and loaded quality factors for the transverse and longitudinal kickers up to 3 GHz.
- Q4 FY2019 Milestones:
- (JLAB) Calculation of the effects of transverse and longitudinal feedback systems on the lifetime of the electron beam polarization;
- (ANL) Final assembly of the transverse kicker;
- (ANL) Measurement of the transverse kicker impedance with a network analyzer;
- (ANL) Leak check of the transverse fast kicker; and
- (ANL) Shipment of the longitudinal fast kicker components to JLAB.