
High Bandwidth Feedback Systems for a High Luminosity EIC

R. Rimmer Jefferson Lab, Newport News, VA

Z. Conway

BNL, Upton, NY

Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding

High Bandwidth Beam Feedback Systems for a High Luminosity Electron Ion Collider

- Project description
 - This proposal is to perform the key research and development required to make practical the production of transverse and longitudinal feedback systems capable of providing the high-bandwidth high-voltage feedback signals required for the future 3 A 12 GeV electron collider ring at the JLAB EIC (JLEIC). Having a large operating bandwidth, lower HOM impedance and better power handling will be the focus of these developments. This will create a robust solution which can be easily adapted to future JLEIC accelerator parameter changes and make developments here adaptable to different accelerators, like the Brookhaven National Laboratory (BNL) electron Relativistic Heavy-ion Collider (eRHiC).
- Project status
 - -Closed
- Main goal
 - Develop transverse feedback system and kickers for an EIC
- Supported by FY 2018-19 DoE NP FOA JLab and BNL Base R&D Funding

Progress report

- Prior FY17 project completed
 - (including a subcontract to DimTel to do high level system architecture)
- JLEIC impedance budget progressed up to pre-CDR-100
- Concept for longitudinal kicker
- Initial EM model of transverse kicker (based on ANL stripline)
- Half-time postdoc started
- Resource issues at ANL, PI moved to BNL

R&D Highlights: JLEIC Impedance analysis

- Ongoing refinement as designs matured
- High-count small impedances (e.g. bellows), and one-off high impedances (e.g. IR)
- Scale from other machines where undefined

e-ring

Component Counts (Courtesy to T. Michalski)

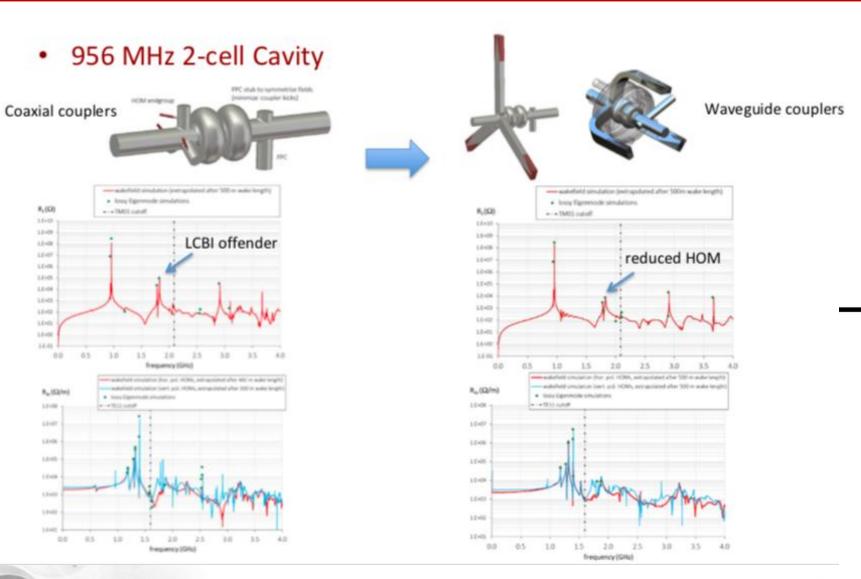
Elements	e-Ring
Flanges (pairs)	1215
BPMs	405
Vacuum ports	480
Bellows	480
Vacuum Valves	23
Tapers	6
Collimators	16
DIP screen slots	470
Crab cavities	2
RF cavities	32
RF valves	68
Feedback kickers	2
IR chamber	1

•	Impedance Estimation (Courtesy to K. Deitrick)											
	Broadband Impedance											
	<i>L</i> [nH]	99.2	28.6									
	$\left Z_{_{ }}/n\right $ [Ω]	0.09	0.02	≤ 0.1 Ω								
	$k_{_{ }}$ [V/pC]	7.7	19									
	$\left Z_{_{\perp}} ight $ [k Ω/m]	60	13 <	$\frac{0.1\mathrm{M}\Omega/m}{}$								

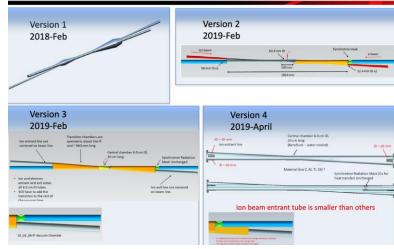
- JLEIC plans to use PEP-II vacuum systems
- Effective impedance is bunch length dependent

i-ring

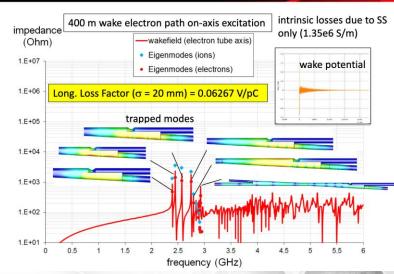
Component Counts (Courtesy to T. Michalski)


Elements	p-Ring
Flanges (pairs)	234
BPMs	214
Vacuum ports	92
Bellows	559
Vacuum Valves	14
Tapers	6
Collimators	16
DIP screen slots	-
Crab cavities	8
RF cavities	40
RF cavity bellows	40
RF valves	24
Feedback kickers	2
Roman Pot	2
IR chamber	1

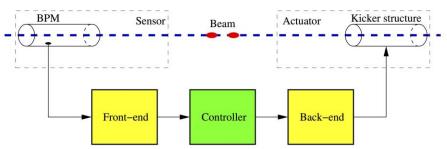
Impedance Estimation


(Courtesy to **Broadband** Reference: K. Deitrick) Impedance PEP-II 97.6 L [nH] $|Z_{_{||}}/n|$ [Ω] 0.08 $\leq 0.1 \Omega$ k_{\parallel} [V/pC] 8.6 $\leq 0.1 \,\mathrm{M}\Omega/m$ $|Z_{\perp}|$ [k Ω /m] 80

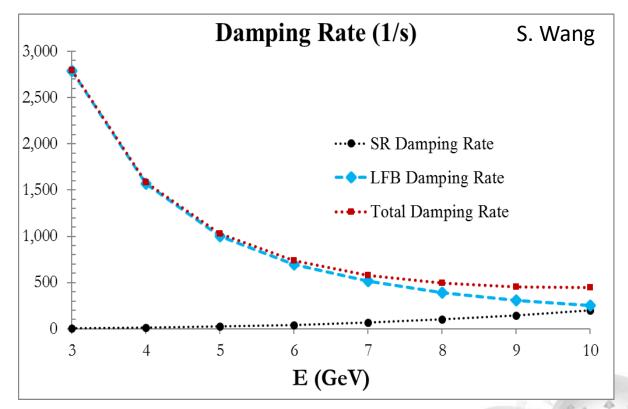
- The short bunch length (1.0cm) at collision is unprecedented for the ion beams in existing ion rings
- Bunch length varies through the whole bunch formation process


Narrowband Impedance optimization: JLEIC ion-Ring cavity and IR (F. Marhauser)

JLEIC IR Chamber Version History



Version 4



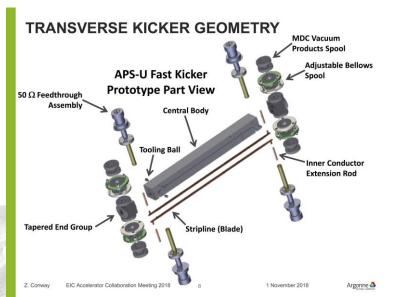
R&D Highlights: Feedback System architecture*

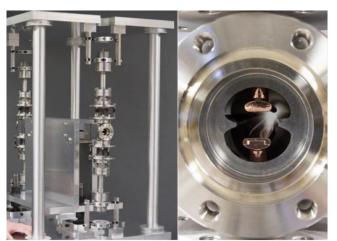
- Maximum bunch frequency $=F_{RF} = 476.3 \text{ MHz}$
- Transverse feedback (baseband)
 - DC to $F_{RF}/2 =$ DC to 238 MHz
- Longitudinal Feedback (damped cavity)
 - —Center frequency = $n*F_{RF} F_{bunch}/4$,
 - —e.g. **1547 MHz, bandwidth** ≥ **238 MHz**

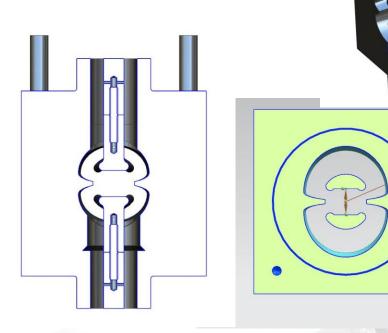
Parameter description	Value
Optimal closed-loop damping time	1.6 ms (205 turns)
Fastest achievable damping time	29 μs (3.7 turns)
Residual dipole motion at optimal damping	$28~\mu m$
Feedback gain for optimal damping	$1.5~\mathrm{\mu radmm^{-1}}$
Power requirement with 0.5 mm excitation, 10 k Ω kicker R_{\perp}	$250 \mathrm{W}$
Power requirement at 5 GeV	700 W

LFB: Longitudinal Feedback

LFB Kicker Total Voltage: 7kV

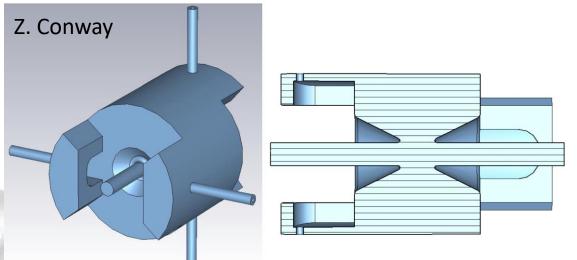

LFB phase resolution: 0.02 rad


Max LFB Gain: 3.5e5


*"Transverse bunch-by-bunch options for JLEIC electron ring", report, Dmitry Teytelman, 2019

R&D Highlights: Transverse kicker

- Based on APS-U injector stripline design
 - —Better thermal properties compared to PEP-II style
 - —More efficient, more robust feedthroughs
 - —Tested with beam at ANL and NSLS-II
- Scaled to JLEIC frequency/aperture
- Feedthrough matching needed optimization



Z. Conway

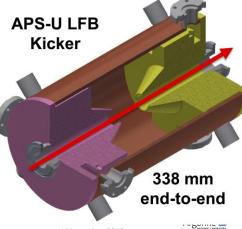
"Preliminary Test Results of a Prototype Fast Kicker for APS MBA Upgrade," C. Yao et al., NA-PAC2016, WEPOB24, Pg. 950 (2016)

R&D Highlights: Longitudinal Feedback Kickers

- ANL has developed a 1.027 GHz, 59 MHz bandwidth, R/Q = $V^2/2P = 160 \Omega$, longitudinal feedback kicker for the APS-U electron storage ring. The APS-U longitudinal feedback system is designed to deliver > 4 kV kick distributed over two longitudinal feedback kickers.
- The APS-U storage ring will operate with a 200 mA 6 GeV electron beam. This beam current is much less than the expected JLEIC electron storage ring operating level of 3 A.

LFB KICKER CONCEPT

Background


- Chose a waveguide over-damped resonator for the APS-U longitudinal feedback (LFB) kicker:
 - Used at ALS, BESSY-II,
 DIAMOND, <u>Duke</u>, DAΦNE, HIGS,
 HLS-II, KEK-B, PEP-II, etc,
 - High shunt impedance,
 - Low HOM shunt impedances,
 - High power handling, and
 - Straightforward fabrication.
- APS-U LFB kicker is much more reentrant for high shunt impedance.

W.Z. Wu et al., NIMA, Vol. 632, # 1, 11 March 2011, Pg. 32-42

Z. Conway EIC Accelerator Collaboration Meeting 2018

Duke LFB Kicker

feedthrough

1 November 2

A Waveguide Overloaded Cavity as Longitudinal Kicker for the DAFNE Bunch-by-bunch Feedback System," A. Gallo et al., International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995.

Present status:

- After 2019 PI meeting attempted to restructure the work with PI at BNL but...
- After 2020 EIC site selection agreed to terminate the project
- JLab funds reprogrammed for EIC*
- ANL funds returned to DOE
- Lessons learned will be useful for EIC
- Actual systems will be developed as/when needed on project

*Continued to support 50% of postdoc to end of FY20

Total expenditures (FY18-19 funds)

ID#	Item/Task	Baseline Total Cost	Costed & Committed	Estimate To Complete	Estimated Total Cost
		(AY\$)	(AY\$)	(AY\$)	(AY\$)
II (°FF2	Fast Feedback Sys&Kicker2	\$8,000	\$7,834	\$0	\$7,834
II F(`FF	Fast Feedback Sys&Kickers	\$448,000	\$89,846	\$0	\$89,846
	Totals:	\$456,000	\$97,680	\$0	\$97,680*

^{*}half post-doc for FY19 and 20

040		Item/Task	Baseline Total Cost	Costed & Committed	Estimate To Complete	Estimated Total Cost
			(AY\$)	(AY\$)	(AY\$)	(AY\$)
W 8 50 W	ΔNI	Fast Feedback Sys&Kickers	\$200,000	\$300	\$0	\$300

Deliverables and Schedule

• Experimental deliverables were shifted by more than a year due to delay in system parameter definition*

and EM/ mechanical design

Task —		FY'18			FY'19				FY'20			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
JLab: Provide e-ring parameters			\rightarrow	✓	✓	✓	✓	✓				
ANL: Preliminary model of transverse kicker			\rightarrow	✓	\rightarrow	\rightarrow	\rightarrow	✓				
JLab: Impedance and instability studies				✓	✓	✓	✓	✓				
ANL: Mechanical design of transverse kicker				→	→	→	→	→	х			
ANL: preliminary design of longitudinal kicker				\rightarrow	✓	\rightarrow	\rightarrow	\rightarrow	х			
JLab: Survey of industrially available digital electronics					✓	✓	✓	✓				
ANL: Drawings of transverse kicker/impedance estimates					\rightarrow	\rightarrow	\rightarrow	\rightarrow	х			
JLab: Ring impedances, instabilities and requirements						\rightarrow	✓	✓	х			
ANL: Tolerance study trans.; Preliminary model of long. kicker						\rightarrow	\rightarrow	✓				1800
JLab: Calculate current limit with feedback							✓	✓		/ \$ \$		
ANL: HOM calcs. Parts ordered for transverse kicker prototype						•	\rightarrow	\rightarrow	х		7/:	237
JLab: study effect of FB on polarization lifetime								\rightarrow	х			
ANL: Assembly of kicker, measure, ship to JLab								\rightarrow	х			

^{*}Prior FY17 project "Fast Feedback System and Kicker Design" just ended in Q4 FY19 (incl. subcontract to DimiTel).

Back up

Original FOA proposal

Title:

High Bandwidth Beam Feedback Systems for a High Luminosity EIC

Institution:

Argonne National Laboratory

Lead Principal Investigator (PI):

Dr. Zachary Conway

JLab Co-Pl

Bob Rimmer

Other personnel:

• Dr. H.-Ulrich Wienands

Collaborative Proposal Information									
	Names	Institution	Year 1 Budget	Year 2 Budget	Year 3 Budget				
Lead PI	Zachary Conway	Argonne national Lab	\$400,000	\$400,000					
Co-PI	Robert Rimmer	Jefferson Lab	\$227,464	\$228,079					
Total	Total \$627,464 \$628,079								

Funded

\$218k

2018 milestones (funded)

- Q3 FY2018 Milestones:
- (JLAB) Table of JLEIC electron storage ring parameters; and
- (ANL) Preliminary model of the transverse kicker for single axis beam deflection.
- Q4 FY2018 Milestones:
- (JLAB) JLEIC storage ring preliminary impedance estimate;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.

2019 milestones (funded)

Q1 FY2019 Milestones:

- (ANL) Drawings suitable for fabrication of the transverse kicker;
- (JLAB) Initial results from the survey of industrially available digital electronics; and
- (ANL) First order estimates of the monopole impedance spectrum for the transverse and longitudinal kickers

Q2 FY2019 Milestones:

- (JLAB) JLEIC storage ring impedance;
- (JLAB) JLEIC electron storage ring collective instability feedback requirements;
- (ANL) Mechanical tolerance study for the transverse fast kicker; and
- (ANL) Preliminary model of the longitudinal kicker.

Q3 FY2019 Milestones:

- (ANL) All parts required for the transverse fast kicker ordered and first parts received;
- (JLAB) Calculation of the JLEIC beam current limit with transverse and longitudinal feedback; and
- (ANL) Calculation results for the dipole mode shunt impedance and loaded quality factors for the transverse and longitudinal kickers up to 3 GHz.

Q4 FY2019 Milestones:

- (JLAB) Calculation of the effects of transverse and longitudinal feedback systems on the lifetime of the electron beam polarization;
- (ANL) Final assembly of the transverse kicker;
- (ANL) Measurement of the transverse kicker impedance with a network analyzer;
- (ANL) Leak check of the transverse fast kicker; and
- (ANL) Shipment of the longitudinal fast kicker components to JLAB.