Innovative, High-energy, Magnetized Electron Cooling for an EIC

S. Benson (PI), M. Bruker, F. Lin, B. Rimmer, H. Wang, S. Wang, H. Zhang, Y. Zhang *Jefferson Lab, Newport News, VA*

M. Blaskiewicz (PI), J. Kewisch, H. Zhao, BNL, Upton NY

P. Piot (PI), J. Ruan, *C. Marshall, *A. Fetterman N. III. Univ., DeKalb IL and FNAL, Batavia IL

G. Krafft (PI), *B. Dhital Old Dominion Univ., Norfolk VA

*Students

2020 NP Accelerator R&D PI Exchange Meeting December 2, 2020, Virtual meeting

Outline

- General description of the project
- Cooling Simulation codes
- Storage Ring Cooling
 - -Single energy
 - -Two energy
- Production and Transport of Magnetized bunches
- Novel Cooler Hardware
 - -Injector and Linac SRF design
 - -Harmonic kicker design
- Bunch beam Cooling experiments

- Description
 - —The EIC at BNL has chosen Coherent electron Cooling for their baseline for the project. This project looks at alternative strategies and technologies for incoherent electron cooling very high energy hadrons.
- Status
 - -Several parts of the project are complete or close to complete. Some were delayed by the COVID-19 situation and one changed direction due to the siting decision.
- Main goal
 - —Develop concepts and technologies that allow cooling of high-current, high-energy hadron beam in an electron collider using incoherent electron cooling.
- Supported by DoE NP Accelerator R&D funding FOA
- This is the second year of a two year project
- We have extended the scope of the project for two parts and are wrapping up the rest.

	FY'19	FY'20	Totals
a) Allocated (Jlab)	\$850,000	\$850,000	\$1,700,000
b) Costs to date	\$850,000	\$303,128	\$1,153,128
a) Allocated (BNL)	\$245,000	\$245,000	\$490,000
b) Cost to date	\$179,513	\$130,080	\$309,593
a) Allocated (FNAL)	\$150,000	\$150,000	\$300,000
b) Cost to date	\$63,921	\$26,200	\$90,121
a) Allocated (ODU)	\$35,000	\$35,000	\$70,000
b) Cost to date	\$28,000	\$31,018	\$59,018

Task		FY'19 FY'20						
185K	Q1 Q2 Q3		Q4	Q1 Q2 Q3		Q3	Q4	
Codes to predict emittance in SR (BNL)		✓						
Codes to predict heating by hadrons (BNL)				✓				
Cooling with arbitrary electron bunch (JLAB)	✓							
Cooling simulation with dispersion (JLAB)		✓						
Cooling simulation with repeatedly used beams (JLAB)				✓				
Benchmark longitudinal cooling (JLAB)						\rightarrow	✓	
Integrate JSPEC with other simulation programs								✓
Benchmark JLEIC with S2E and imperfections (JLAB)							+	
Final software integration, parallelization, and report (JLAB)								\rightarrow
Benchmark of ion effects on electrons (BNL)			✓					
Model of single energy storage ring cooler (BNL)				✓				

Task	FY'19 FY'20						'20	
1d5K	Q1	Q1 Q2 Q3 Q4		Q1	Q2	Q3	Q4	
Optimized storage ring cooler (BNL)								\checkmark
Optics for two-energy storage ring cooler (JLAB)				✓				
Initial single particle tracking in 2-energy storage ring				✓				
Estimates of IBS and SC						✓		
Optimization of cooler parameters (JLAB)				\rightarrow	\rightarrow	\rightarrow	✓	
Studies of CSR and BBU (JLAB)							\rightarrow	\rightarrow
Magnetized beam transport simulations (NIU)		✓						
Generation of magnetized beams (FNAL)			✓					
LPS diagnostics design				✓				
LPS installation					\rightarrow	\rightarrow	\rightarrow	\rightarrow
Test of merger					\rightarrow	\rightarrow	~	

Task		FY'19 FY'						20	
TASK	Q1	Q1 Q2 Q3 Q4		Q1	Q2	Q3	Q4		
Halo tests (FNAL)					\rightarrow	+			
Magnetized beam simulations in bends (JLAB,NIU)					\rightarrow	\rightarrow	\rightarrow	\rightarrow	
Magnetized beam in bends experiment (FNAL)								\rightarrow	
RF element layouts (JLAB)			✓						
HOM damping requirements (JLAB)				✓					
HOM electromagnetic design (JLAB)				\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
Thermal and mechanical HOM design (JLAB)					\rightarrow	\rightarrow	\rightarrow	\rightarrow	
Prototype HOM damper bench test						\rightarrow	\rightarrow	\rightarrow	
HOM loads tested on cavities								\rightarrow	
Harmonic kicker physics design (JLAB)		\rightarrow	✓						
Harmonic kicker engineering design (JLAB)			\rightarrow	✓					

Task		FY'19				FY'20			
TASK	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Harmonic kicker fabrication (JLAB)				\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	
Preparations complete for beam test (JLAB)						+			
Beam test of harmonic kicker on UITF (JLAB)								+	
Design and fabricate ion BPM (JLAB, IMP)	✓								
Define HV pulser design (JLAB)	✓								
Initial low energy tests and data analysis (JLAB, IMP)		\rightarrow	\rightarrow	✓					
Fabricate HV pulser(JLAB)				+					
Install HV pulser and test (JLAB,IMP)					+				
Low energy test with phase dither (JLAB,IMP)					✓				
Analyze final data and produce paper						\rightarrow	✓		
Design 5.5 MeV DC cooler								+	

Cooling Simulations

DOE R&D PI Exchange Meeting, , Dec. 2, 2020

Simulation Tools

• Equilibrium electron beam in cooler Particle tracking in the ring cooler with radiation, IBS, BBS and quantum excitation.

 Space charge in the cooling section.

> The electron beam size at the end of cooling section is increased by about 2% (single pass).

🛟 Fermilab

ENERGY

Office of

Science

Cooling simulation

Cooling evolution with nonmagnetized cooling, IBS, dispersion on electron beam and ion beam.

De

BROOK

nicadd

Simulation Codes

JSPEC is a modernized version of Betacool that is more efficient and extensible

Enhancements to JSPEC during the last year:

Restructured code

- Old input files can still be used.
- Modernized the structure to make it more extensible.
- Changes to accommodate EIC simulations
 - Can now use multiple electron bunches per hadron bunch.
 - Have more non-magnetized options now, as well as a single particle model
 - Can use different models for the transverse and longitudinal cooling
 - Saw good agreement with other codes when simulating a low-energy cooler on the EIC

Improve IBS models

- Can now include vertical dispersion.
- Includes Bjorken-Mtingwa and Zimmerman models
- Improvements in User Interface and compatibility with other accelerator codes
 - Can run in a Python environment.
 - Input and output files compatible with SDDS codes.
- Luminosity
 - Calculate the instant luminosity during the evolution of the ion beam under IBS/cooling.

JSPEC Benchmarking

- Introduced turn-by-turn model to allow simulations with synchrotron motion
 - Bunched electron beam is repeated used (~10 times) and may be distorted due to collective effects.
 - Use the user-defined electron model to represent various electron bunches. Calculate the cooling rate for each cases. Since the time for ~10 passes is still much smaller than a simulation time step (~0.1 s), the averaged cooling rate is used for the current time step.
 - Currently works for the RMS dynamic model. We are working on adding it to the particle model.
- Best data is for longitudinal cooling.
 - Some range of input parameters for IMP experiments. Optimize parameters for best fit of all data sets.
 - Can fit transverse data easily but the error bars are large.

Storage Ring Cooler

DOE R&D PI Exchange Meeting, Dec. 2, 2020

Storage Ring Cooler: Single Energy

Challenge: Stop the emittance growth due to IBS, and maintain the integrated luminosity.

- Charge = 50nC
- Cooling section: ~200m drift for good cooling
- Wiggler section: strong radiation damping to get a low temperature of e-beam
- Bunch-by-bunch non-magnetized cooling ٠

Mode of operation	Integrated Luminosity [fb ⁻¹]
Strong hadron cooling	124
On-energy injection (using Blue Ring)	112
Ring-based electron cooling	87
No cooling	40

nicad

Comparison of BNL EIC integrated luminosity for e-p collisions for various cooling options (from pCDR)

Similar bunch lengths

Fermilab

ENERGY

Science

- E-beam parameters: IBS, heating by the ion and synchrotron radiation.
- Cooling effect: IBS, e-beam temperatures.

Single Energy Storage Ring Optics

TABLE II. Parameters of the ring cooler

The ring uses both horizontal and vertical wigglers with sextupoles built into the wigglers.

It uses dispersion in the cooling section to couple longitudinal and transverse cooling.

Cooling times are useful and allow one to obtain high lluminosity.

DOE R&D PI Exchange Meeting, Dec. 2, 2020

Path length [m]

Simulation results on BNL EIC

- With the dispersions, we are close to the cooling requirement. •
- The optimum dispersion is related to the beam size. The cooling • performance could be better after some optimization on the betafunctions.
- The dispersion will introduce extra IBS heating in the ring cooler and the • proton ring. We didn't include that yet.

‡ Fermilab

NERGY

Vertical Horizontal $200\sigma_F\sigma_t$ Time (hours)

Without-cooling

ncad

Wiggler-Free Two Storage Ring Cooler

Office of

Science

BROOKH

NATIONAL LABOR

nicadd

🛟 Fermilab

ENERGY

Note that:

- Low energy section can be tuned separately from high energy section, and the low energy varies as the ion energy is varied
- The length of cooling section will be determined by the available space in the machine, ~ 120 m in the EIC

Momentum Aperture

	Unit	Parameter				
Ion Energy	GeV	275	100			
Electron Energy	MeV	150	55			
Bunch intensity	10 ¹⁰	6.9	6.9			
Bunch charge	nC	11.1	11.1			
Normalized emittance h/v	μm	2.8/0.45	4.0/0.22			
Energy spread	10 ⁻⁴	6.8	9.7			
RMS bunch length	cm	6	7			
Cooling channel	m	120	120			
Magnetized cooling		Strong				
Cooling solenoid	kG	20	20			
IBS time (h/v/l)	h	2/278/3.4	2.4/2.8/2			
Cooling time (h/v/l)	h	0.4/94/2.0	1.2/24/0.5			

Magnetized Beam Transport

DOE R&D PI Exchange Meeting, Dec. 2, 2020

Magnetized beam Simulations

- FAST injector modeled with ASTRA and IMPACT-T
- Transformation to flat beam simulated with ELEGANT and IMPACT-T

 Simulation of the flat beam conversion demonstrates that eigen emittances are mapped into conventional emittances

Eigen emittances of the 3.2 nC magnetized beam experimentally measured at FAST (blue circles with error bars) compared with numerical simulations carried out with IMPACT-T.

Beam Halo Measurements

C. Marshall, Design and Analysis of a Halo-Measurement Diagnostics, NAPAC2019

Straight merger

• Have tested RF merger concept at AWA

Overview of the straight-merger configuration (a) and simulated kick as a function of phase (b). The simulations are performed using the AWA TDC powered for a maximum kick of 20 mrad.

Deflection along the straightmerger for different injection energies.

Cooler Hardware

DOE R&D PI Exchange Meeting, Dec. 2, 2020

197 MHz QWR concept for EIC cooler

The EIC requires very long bunches for cooling the EIC hadron bunches. Lower frequencies plus harmonic cavities can provide 250 psec window of RF voltage flat to 10⁻⁴ CeC ERL also needs a 197 MHz cavity and 5-cell linac modules.

Basic layout of the cooler linac with two 197 MHz modules and a 591 MHz third harmonic module

Harmonic Kicker Design

Harmonic Beam Kicker. A first 952.6 MHz copper cavity has been prototyped, bench measured, and satisfies beam dynamic requirements for a Circulating Cooler Ring design for the bunched electron cooler. The EIC Rapid Cycling Synchrotron can use the same technology to fill the electron storage ring.

with-post plans space-spat 2-radiateritase infant 2-taker.sor.secon.fo.be

(a) Harmonic kicker only (without pre-kicker).

DOE R&D PI Exchange Meeting, Dec. 2, 2020

(b) With pre-kicker.

nicadd

BROOK

🛟 Fermilab

U.S. DEPARTMENT OF

Office of Science

JSA

Fabrication Status

- All parts machined and QC'd.
- Getting brazing and electron beam welding recipes qualified before final brazing and welding.

Bunched Beam Cooling Experiments

LEReC simulation (blue) and data

🛠 Fermilab Bunched Beam Cooling Experiment BROOKHA NATIONAL LABO nicadd Office of ENERGY Science • Using a DC cooler to demonstrate cooling by a bunched electron beam

- Pulsed electron beam from a thermionic gun by switching on/off the grid electrode
- 1st Experiments performed on 4/2016, follow-up experiment on 4/2017, 12/2018

Ion bunches

RF voltage

Stored ions

Anode voltage

0.5

100 BPM (Nolt)

Pulse width 0.000 0.250 Voltage (V) Integrated 1.375 1.500s - 1 625s Wdg 0.1

Ы

0.0

0.5

1.0

1.5

2.5

2.0

3.0

Longitudinal Time (us) cooling DOE R&D PI Exchange Meeting, Dec. 2, 2020

3.5

4.0

A DC electron cooler at Institute

JLab-IMP Collaboration

thermionic gun

2036

¹⁸³⁷ (su) ¹⁶³⁸ au ¹⁴³⁹ 1439

1241 **Duildues** 1042 842.8

643.9 445.0

IMP Cooling Results

 Evolution of the statistical properties of the longitudinal ion bunch profile as a function of time.

---400 ns ---500 ns ----600 ns ----700 ns900 ns — 1000 ns (s^{-1}) $\mathbf{2}$ $-\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}t}$ longitudinal: (s^{-1}) 0.4 $-\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}t}$ 0.2transverse: 0 -0.20.51.5 $U_{\rm RF, calc}$ (kV)

Longitudinal and transverse cooling rates as a function of electron bunch length and RF voltage. The interpolating lines on both sides are meant to guide the eye.

JSPEC Benchmarking

Cooling of krypton ion bunch with 900 ns electron bunch

Cooling of krypton ion bunch with 500 ns electron bunch

Summary

Many different threads to the research:

✓ Cooling Simulations

- Good advances in both capability and usability.
- Are using the codes now for design

✓ Storage Ring Coolers

- > Rings designs are maturing and starting to look feasible.
- Dynamic aperture is still a challenge due to wigglers and low energy.
- Both designs see net cooling at peak luminosity.

✓ Bunch beam cooling experiment

Have published cooling results with good agreement between experiment and simulations.

✓ Magnetized beam transport

- > AWA is providing new experimental capability.
- Good agreement between simulations and experiment
- > First test of RF merge idea complete.

o Cooler Hardware

- Designs for EIC frequencies in progress
- Harmonic kicker parts are fabricated

Brookhaven Simulation Effort

• E-beam tracking (after dynamic aperture work)

- Radiation damping and quantum excitation
- IBS with H and V dispersion
- Heating by the ions assuming Gaussian distributions and using Landau collision integral.
- Track rms emittances using a large time step
- Space charge and Z/n limits tested after the run

Hadron beam cooling

- Non-magnetized cooling with 3 different electron temperatures
- IBS, space charge
- Beta function variation in the cooling section
- Ion dispersion, electron position and energy offsets in the cooling section
- Use particle tracking and scale cooling and IBS to allow a large time step, as was done for stochastic cooling.

Thank You

DOE R&D PI Exchange Meeting, Dec. 2, 2020