High Gradient Actively Shielded Nb₃Sn Quadrupole

Michael Anerella Brookhaven National Laboratory GianLuca Sabbi Lawrence Berkeley National Laboratory Tim Michalski Thomas Jefferson National Accelerator Facility

Electron-Ion Collider

Jefferson Lab

Collaboration

- BNL (M. Anerella)
 - Magnet design & analysis
 - Shield coil fabrication
 - Assembly tooling & Test tooling design & fabrication
 - Magnet test
- LBNL (G. Sabbi)
 - LARP coil selection, QA & delivery
 - Cross-check magnet 2D analysis, develop 3D analysis
 - Support assembly & test
- TJNAF (T. Michalski)
 - parts fabrication & procurement
 - testing participation

Design and Prototyping of Superconducting EIC – Interaction Region Magnets

Funding Source	ΡΙ	R&D Report Priority #	R&D Panel Priority Rating
FY17	M. Anerella	28	Hi-C

• The panel identified the validation of magnet designs associated with high-acceptance interaction points by prototyping as a key area that is common for all EIC concepts (p. 41)

Overview

- Hadron IR quads need large apertures & high gradients.
- Must protect e-beam from large external B-fields.
- Solution is to use actively shielded coil geometry [1].
- "proof of principle" using existing 120mm aperture Nb3Sn coils

Perspective

Why not use existing, e.g., LHC High Luminosity Upgrade technology/designs in the EIC IR?

Design

Compact mechanical structure "Proof of Principle", i.e., NOT a specific IR solution

Design Parameters	Unit	Value
Clear aperture	mm	120
Gradient	T/m	133
Peak Field	Т	9.3
Current (main coil)	kA	13.6
Current (shield coil)	kA	0.7

- Magnet uses tested Nb₃Sn (LARP) 120mm Rutherford main coils inside a (Ø1mm, 7 strand NbTi cable) Direct Wind shield coil.
- In this way we leverage LARP high field Nb₃Sn R&D experience to make a prototype test with minimal risk, investment and time.
- The shield coil provides zero field at the electron beam and reduces the net gradient of the main coil by 7% and also
 reduces the main coil's net outward
 Lorentz force (which is unlike a magnetic yoke which would increase the force experienced by the main coil).

Status Summary – details in following slides

<u>BNL</u>

- Magnet design is complete
- Assembly tooling fabrication is complete & assembled
- Testing tooling fabrication is complete & being assembled
- 15cm long mockup assembly & test is complete
- Main quadrupole structure assembly has started
- Shield quadrupole coil assembly has started

<u>LBNL</u>

- LARP coils have been selected, inspected & delivered
- 2D azimuthal load analysis including impact of coil size variations is complete
- 3D model and end region analysis: coupled axial and azimuthal load is complete (Results submitted for publication in IEEE/TASC: G. Vallone et al., "3D Mechanical Analysis of a Compact Nb3Sn IR Quadrupole for EIC")

<u>TJNAF</u>

• All parts have been fabricated, most are delivered, a few corrections are underway

BNL progress: 15cm mockup - 2-D experimental confirmation of mechanical structure

• Excellent results:

- Validation of revised gauge installation methods
- Max. applied load versus net coil preload measured values closely match analysis
- Increase in coil preload due to cooldown measured values are better than analysis

Electron-Ion Collider

8

Main quadrupole assembly

Main quad coils installed on assembly mandrel:

- ~ 6 month delay due to COVID
- Electrical issues previously reported by LBNL confirmed in electrical testing – data consistent with values seen during prior HQ magnet tests at LBNL and CERN
- Operational plan developed (leave suspect heaters open, use dump resistor + CLIQ, etc.) to mitigate risks
- Assembly continuing

Shield quadrupole coil assembly

Coil wiring underway:

- Several months required to program, commission new large capacity drive motor (needed for large size, weight, of stainless steel support tube)
- ~ 6 month delay due to COVID
- Delamination of epoxy impregnated fiberglass after cure of 2nd layer
- 1st of 4 layers restarting now

Électron-Ion Collider¹⁰

Testing top hat

- All parts are received
- Assembly has started
- Work is supporting schedule

Electron-Ion Collider¹¹

LBNL Progress - HQ Coil Selection, QA & Shipping

Voltage Applied (Target/ <i>Actual</i>)	Coil	Hi-pot matrix (Coil 7			7)
PHA01	700/ <i>700</i>	PHA01		_	
PHA02	1000/1000		PHA02		_
PHB01	1000/100			PHB01	
PHB02	300/ <i>300</i>				PHB02
LE IL ES	700/ <i>700</i>	500/ <i>500</i>	500/ <i>500</i>		
LE OL ES	750/ <i>750</i>			500/ <i>500</i>	300/300
RE IL ES	1000/1000	500/ <i>500</i>	500/ <i>500</i>		
RE OL ES	1000/1000			500/500	300/300
Island	R Only/28k Ω				

Voltage taps and quench heaters

Ca:1.#	Dillahal	Resistance	
COII #	PH Label	(Ω)	
	PH05A01	6.5	
-	PH05A02	6.5	
5	PH05B01	6.2	
	PH05B02	6.1	
	PH07A01	6.4	
7	PH07A02	6.4	
/	PH07B01	6	
	PH07B02	6	
	PH08A01	6.7	
0	PH08A02	6.7	
0	PH08B01	6.2	
	PH08B02	6.3	
	PH09A01	6.5	
0	PH09A02	6.4	
9	PH09B01	6.1	
	PH09B02	6	

	Voltage	Resistance		
V_Tap	Measured	Calculated		
	(2 Amp)	(Ω)		
VT05A01	0.3035	0.15175		
VT05A02	0.3033	0.15165		
VT05A03	0.2958	0.1479		
VT05A04	0.2044	0.1022		
VT05A05	0.1734	0.0867		
VT05A06	0.173	0.0865		
VT05A07	OPEN			
VT05A08	0.1704	0.0852		
VT05A09	OPEN			
VT05A10	0.1687	0.08435		
VT05B10	0.1672	0.0836		
VT05B09	0.166	0.083		
VT05B08	0.165	0.0825		
VT05B07	0.1643	0.08215		
VT05B06	0.1632	0.0816		
VT05B05	0.1621	0.08105		
VT05B04	0.0803	0.04015		
VT05B03	0.0084	0.0042		
VT05B02	OPEN			
VT05B01	0.0007	0.00035		
	V_Tap VT05A01 VT05A02 VT05A03 VT05A04 VT05A05 VT05A06 VT05A07 VT05A08 VT05A09 VT05B07 VT05B07 VT05B07 VT05B07 VT05B07 VT05B04 VT05B03 VT05B03 VT05B02 VT05B01	Voltage V_Tap Measured (2 Amp) V105A01 V105A02 0.3033 V105A03 0.2958 V105A04 0.2044 V105A05 0.1734 V105A06 0.173 V105A07 OPEN V105A08 0.1704 V105A09 OPEN V105A00 0.1672 V105B10 0.1672 V105B08 0.1665 V105B09 0.1665 V105B05 0.1621 V105B06 0.1632 V105B07 0.1621 V105B03 0.0083 V105B04 0.0803 V105B05 0.0621 V105B04 0.0803 V105B05 0.0084 V105B01 0.0007		

Azimuthal Loading and Coil Size

- Coil size variations due to fabrication tooling and coil components tolerances
- Local stress will be a function of coil size and stiffness, and structure stiffness
- For a 150 μ m size variation, stress variation of ~20 MPa (30% lower than in MQXF)
 - EIC structure is less sensitive to coil size variations

.....

BERKELEY

lui)

• 2D model used as building block and reference/cross-check for the 3D model

- A **3D** FEW **model** is required to explore the performance of the novel longitudinal loading system:
 - Apply prestress to the rods ~ against the bars
 - Torque the set screws to apply prestress to the coil
 - Load measured with bullet gauges and strain gauges on the steel rods

3D FEA Results: Axial Loading

.....

BERKELEY

Three cases are considered: bars installed and torque applied on the set screws (Screws), bars installed with no torque applied on the set screws (Bar), no bars installed (Rod).

Advantages of the novel longitudinal loading system:

- Small reduction (mostly on the second block) of the contact pressure variation during powering
- Reduced longitudinal motion of the coils: from 88 µm to 34 µm → minimize quench training
 Coil pre-load reduction due to axial bars is acceptable since sufficient margin is available in the EIC design

JLab progress

Providing the bulk of parts fabrication & procurement:

- All parts complete *including inspections*
- Most received at BNL, some remaining to be shipped, supporting schedule
- A few reworks of final lead splice assembly parts underway, supporting schedule

Budgets

BNL

	FY2018	FY2019	FY2020	FY2021	Total
a) Funds allocated	\$1,140,000	\$1,140,000			\$2,280,000
b) Actual costs to date	\$128,638	\$496,892	\$753,410	\$121,072	\$1,500,012
c) Uncosted Commitments					\$1,724
d) Uncommitted funds					\$778,264

TJNAF

	FY 2019	FY 2020	FY 2021	TOTAL
a) Funds Allocated	\$218,000	\$218,000	\$0	\$436,000
b) Actual Costs to Date	\$163,851	\$246,646	\$5,518	\$416,015
c) Uncosted Commitments	\$0	\$0	\$0	\$0
d) Uncommitted Funds	\$0	\$0	\$19,985	\$19,985

LBNL

	FY2018	FY2019	FY2020	FY2021	Total	
a) Funds allocated	\$100,000	\$100,000			\$200,000	
b) Actual costs to date	\$25,030.96	\$69,206.70	\$35,195.16	\$21,504	\$150,936.82	
c) Uncosted Commitments	\$0	\$0	\$0	\$0	\$0	I
d) Uncommitted funds					\$49,063.18	
adultite						0

17

Working Schedule to Completion

D	WBS	% Complete	Fask Name	Duration	5 tart	Finish	2021 Mar Jane Jane Jane Jane Jane Jane Jane Jane
1	1	60%	High Gradient Actively	708.5	Wed 8/1/18	Thu 5/27/21	neier Apr Neiey Auto Auto Aug Step Occ. Neor Dec Jaen neier Apr Neier Auto Auto
			Shielded Quadrupole	days			
2	1.1	94%	Design	248 days	Wed 8/1/18	Mon 7/29/19	
10	1.2	70%	Parts Fabrication	332 days	Wed 8/29/18	Tue 12/31/19	
17	1.3	79%	Installation	312 days	Thu 9/27/18	Tue 12/31/19	
22	1.4	100%	receive/inspect HQ_coils at LBNL	259 days	Mon 10/1/18	Mon 10/14/19	Main coil & shield
25	1.5	26%	Assembly	285.5 da	Mon 2/10/20	Thu 3/25/21	coil complete in
26	1.5.1	30%	main quad	252 days	Mon 2/10/20	Thu 2/4/21	COVID shutdown
36	1.5.2	30%	shield quad	109.5 da	Tue 9/8/20	Wed 2/17/21	
81	1.5.3	0%	magnet as sembly	53 days	Thu 1/7/21	Thu 3/25/21	
82	1531	0%	install, wire axial strain gaug	32 days	Thu 1/7/21	Wed 2/24/21	
83	1532	0%	align / connect coils	5 days	Wed 2/17/21	Wed 2/24/21	
84	15.33	0%	install electron beam tube, Hall probes	2 days	Wed 2/24/21	Fri 2/26/21	
85	1.5.34	0%	install end plates	6 days	Fri 2/26/21	Mon 3/8/21	
86	1.5.35	0%	apply main quad axial loa	2 days	Mon 3/8/21	Wed 3/10/21	
87	1.5.36	0%	electrical tests	1 day	Wed 3/10/21	Thu 3/11/21	I I
88	15.37	0%	solder leads / install splice	10 days	Thu 3/11/21	Thu 3/25/21	
89	1.6	0%	Magnet Test	45 days	Thu 3/25/21	Thu 5/27/21	
90	1.6.1	0%	prepare for test	10 days	Thu 3/25/21	Thu 4/8/21	Ready for test in
97	1.6.2	0%	Cold Test	28 days	Wed 4/7/21	Mon 5/17/21	late Mar 2021
98	1.6.21	0%	turn on refrigerator / mak	3 days	Wed 4/7/21	Mon 4/12/21	
99	1.6.22	0%	300 K electrical checkout / warm measurements	2 days	Thu 4/8/21	Mon 4/12/21	•
100	1.6.23	0%	cool magnet to 4.5K	2 days	Mon 4/12/21	Wed 4/14/21	
101	1.6.2.4	0%	4.5K electrical checkout	1 day	Wed 4/14/21	Thu 4/15/21	I I I
102	1.6.25	0%	QPR tests	3 days	Thu 4/15/21	Tue 4/20/21	
108	1.6.26	0%	4.5K main quad training quenches (20)	10 days	Tue 4/20/21	Tue 5/4/21	
104	1.6.27	0%	4.5K shield quad ramp te	1 day	Tue 5/4/21	Wed 5/5/21	Testing schedule may
105	1.6.28	0%	magnetic "zero field" measurements	5 days	Wed 5/5/21	Wed 5/12/21	shift to avoid AUP
105	1.6.29	0%	warmup	2 days	Wed 5/12/21	Fri 5/14/21	testing conflict
107	1.6.2.10	0%	300 K electrical checkout	1 day	Fri 5/14/21	Mon 5/17/21	
108	1.6.3	0%	breakdown test	8 days	Mon 5/17/21	Thu 5/27/21	<u></u>

- Good progress made by all collaborators
- Good technical status
- Good financial status
- Some schedule slip, but ample float remains