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Why we doing this?

« 2018 NAS Assessment of U.S.-Based Electron-lon Collider Science: The
accelerator challenges are two fold: a high degree of polarization for both beams,
and high luminosity.

» April 2018 eRHIC pCDR review committee report:

“The major risk factors are strong hadron cooling of the hadron beams to achieve
high luminosity, and the preservation of electron polarization in the electron storage
ring. The Strong Hadron cooling [Coherent Electron Cooling (CeC)] is needed to
reach 1034/(cm?s) luminosity. Although the CeC has been demonstrated in

simulations, the approved “proof of principle experiment” should have a highest
priority for RHIC.”
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What I1s Coherent electron Cooling

 Short answer — stochastic cooling of hadron beams with
bandwidth at optical wave frequencies: 1 — 1000 THz

* Longer answer on next pages
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What can be tested experimentally?

Litvinenko, Derbenev, PRL 2008
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Attempt to test FEL-based CeC

1.25 MV
Z CeC “kicker” CeC FEL amplifier ~ CeC modulator _ SRF photo-gun
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Record breaking 113 MHz CW SRF Gun:
perfect source for EIC cooling systems

Solenoid

Gun energy: 1.25 MV

_aser spot on cathode r.m.s. size: 0.8mm
(3.2 mm diameter)

Bunch charge: 600 pC

Bunch length: 400 ps

Gun solenoid: 8.6 A
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« Quarter wave design
* Operates at 4.2°K
« CsK,SB Cathode is at room temperature
« Stalk is RF choke and field pick-up
« Manual coarse tuners
* FPC serves as fine tuner
« Operational CW voltage 1.25 MV
* Maximum charge 10.7 nC
« Darkcurrent < 1nA
* Very low normalized emittance
* 0.15mm mrad at 100 pC
* 0.35mm mrad at 600 pC



Puzzle of the CeC Run 18

Search for ion’s imprint in electron beam

and matching beam’s relativistic factors was Interaction of ion bunch synchronized
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We ran out of time to demonstrate the FEL-based CeC during Run 18 with RHIC.
FEL-based CeC concept remains valid and awaiting for experimental demonstration.



Solving the Puzzle

RHIC cryo system extended operation for LEReC mid-September and we used it to find the culprit:
THz noise in the electron beam (300-fold above the shot noise!) dwarfing the ion beam imprint.
This was not a failure of the FEL-based CeC concept, but unexpected excessive noise in the beam

Uncompressed bunch:
simulations and experiment in Sept 2018
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(@) Measured time profiles of 1.75 MeV electron bunches with 0.45 nC to
0.7 nC; (b) Seven measured overlapping spectra and PCI spectrum
simulated by SPACE (slightly elevated yellow line); (c) Clip shows a 30-
psec fragment of seven measured relative density modulations.

Compressed beam simulation in CeC

accelerator using Impact-T code @ NERSC
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First we showed it in simulations
that we can control noise level in
the electron beam and confirmed
this in the experiment
during a short run in Summer 2019



Control of the noise In electron beam

Run 18 lattice and beam: 0.6 nC per bunch
Large signal of 2,500 VV/A ~ 250-fold above base line.

Can be seen both on scope and measured easily 10009
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We demonstrated that with 75 A peak current we can reduce beam noise to
acceptable level. It could be as low as 6-10 times above the baseline




Changing CeC amplifier from FEL to PCA

The FEL-based CeC concept is still valid — the system is stored and can be tested in the future
o » CeC SRF accelerator
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CeC with PCA: status

* Mechanical design of the new CeC
system is completed

* We commissioned new laser system
with controllable pulse shape

* All new vacuum chambers with
beam diagnostics are built and
installed

» All supports are built and installed

» All solenoids are designed,
manufactured, delivered, measured
and installed

» Assembly of the plasma-cascade
based CeC planned to be I P2
completed before the Run 19 :




Optimized electron beam
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Core part of the beam has < 1.5 um emit., ~ 1e-4 slice energy spread, ~ 70
A peak current, satisfies beam requirement for cooler.
More in talk by Yichao Jing 12



Simulation of Plasma-Cascade Instability

SPACE code was modified to solve 3D beam dynamics of PCI self-consistently for a beam
with a constant energy

We had a good agreement between the theory and the SPACE 3D simulations for periodic
systems and constant beam energy

We can comfortably predict performance of microbunching Plasma Cascade Amplifier (PCA)
for CeC: either for CeC test experiment or for eRHIC energy

We are still exploring possibility of using a generic code Impact-T for simulating PCI in
arbitrary accelerator (e.g. including acceleration and compression)

While we have initial indication that this approach could work, this work is still in progress.

SPACE code simulations of microbunching PCA for CeC
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Simulated performance: full 3D treatment

Longitudinal electric field (V/m)

CeC theory is important for scaling and for benchmarking of codes — full 3D simulations is
the must for any reliable predictions, which have to be tested experimentally

Predicted evolution of the 26.5 GeV/u ion bunch profile in RHIC
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PCA-based CeC experiment system Black — initial profile, red — witness (non-interacting) bunch after 40

minutes. Profiles of interacting bunches after 40-minutes in PCA-
based CeC for various levels of white noise amplitude in the electron
beam: green— nominal statistical shot noise (baseline), dark blue — 9
fold above the baseline, and green — 225 fold above the baseline

Cooling will occur if electron beam noise is below 225-times the base-line (shot noise)
We demonstrated beams with noise as low as 6-times the baseline



Distribution of cooling between longitudinal and
ransverse degrees of freedom — real kick

Kick

Wrong sign of displacement
:8 AX =-0.750,

Ax = 0.750,
zero energy kick at
0.40;

20000 30000 40000

Excessive shifting of zero-kick point to & = 0.6c;
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Proposed plan for experimental demonstration of
PCA-based CeC

RHIC Run 20 — requested 8 days of dedicated RHIC time
« Commission the PCA-based microbunching CeC system
» Generate low-noise CW electron beam with required parameters
« Demonstrate plasma-cascade amplification in the CeC section
* Observe ion imprint in the electron beam and optimize it

Summer-Fall 2020 — install time-resolved diagnostic beamline

RHIC Run 21 - requested 14 days of dedicated time

Commission time-resolved diagnostic beamline

Measure and optimize electron beam parameters

Establish interaction of electron and ion beams

Demonstrate longitudinal cooling of ion bunch in PCA-based CeC
Evaluate longitudinal cooling

RHIC Run 22 —we plan to ask for 14 days of dedicated time

 Reestablish operation of CeC system

« Demonstrate 3D — longitudinal and transverse - cooling of ion bunch in PCA-based
CeC

» Evaluate PCA-based microbunching CeC



Conclusions

Unsuccessful attempt of observing imprint during had a very solid explanation —
very high level of noise in electron beam dwarfing the ion imprint. This result has
nothing to do with validity of FEL-based CeC - it was and still valid. Small aperture
was incompatible with low energy RHIC operation during— the FEL-based CeC is
removed and stored for future use.

We learned how to control noise in the beam and to reduce it to the acceptable level

We developed new design of CeC with plasma-cascade amplifier and completed
simulations of the cooling process . It has significant advantages:

» \ery large bandwidth (~ 25 THz for the proposed experiment, ~ 1,000 THz for eRHIC)
» Cooling of hadrons with all amplitudes of oscillations (e.g. full acceptance)

The PCA-based CeC system is undergoing installation and will be completed prior
to RHIC Run 20.

We propose three year program to fully evaluate the CeC performance:
* Year 1 (Run 20) — demonstration of PCA and ion imprint
 Year 2 (Run 21) — longitudinal cooling of 26.5 GeV/u ion beam
» Year 3 (Run 22) — simultaneous transverse and longitudinal cooling

Successful experimental demonstration of PCA-based CeC will serve as a perfect
starting point for design of cooler for future Electron-lon Collider
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Back-ups



Dates: July 24 (Wednesday)- July 26 (Friday), 2019

Location: Center for Frontiers in Nuclear Science, Peter Paul Seminar Room (C-120, Physics Building) https://www.stonybrook.edu/cfns/ &2
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

« Goal of the workshop is in depth discussion of progress and challenges in the Coherent Electron Cooling theory, simulations and
experiment.
« Workshop format: In contrast with conference style workshops, this will be a real workshop with full length discussion sessions. Few
invited presentations are designed to stimulate discussions.
* Logistics: Workshop is by invitation only — send expression of interest to Vladimir Litvinenko vladimir.litvinenko@stonybrook.edu and
Gang Wang gawang@bnl.gov.
There will be no workshop fees and no offered support — all participants will be responsible for their travel and living expenses.

.

L

Wednesday, July 24

Session 1: Convener — Rui Li (JLab)/ Local session chair - Sergei Seletskiy

9:00 Thomas Roser, Why strong hadron cooling is needed?

9:30 Yaroslav S Derbenev,How Coherent electron Cooling was conceived?

10:00 Discussion lead by the convener - coffee break at 10:30

12:00 — 14:00 Lunch break

Session 2: Convener — Yue Hao (MSU)

14:00 Vladimir N Litvinenko, Variety of CeC systems

14:15 Gang Wang, CeC theory

15:00 — 17:00 Discussion lead by the convener - coffee break at 15:30

Thursday, July 25

Session 3: CeC. Convener — David Bruhwiler (RadiaSoft)

9:00 Jun Ma, CeC simulations &

9:30 Yichao Jing, Beam dynamics in CeC accelerator

10:00 Discussion lead by the convener - coffee break at 10:30

12:00 — 14:00 Lunch break

Session 3: CeC. Convener — Dmitry Kayran (BNL)

14:00 Igor Pinayev, CeC experiment — physics

14:30 Jean Clifford Brutus, CeC experiment — engineering

15:00 — 17:00 Discussion lead by the convener - coffee break at 15:30

Friday, July 26

Session 4: CeC. Convener —Vladimir Litvinenko (SBU)
9:00 Short discussion of possible collaborations

9:15 — 12:00 Summaries - coffee break at 11 am

Rui Li, "CeC & Hadron cooling"

Yue Hao, CeC theory

David Bruhwiler, CeC simulations

Dmitry Kayran, CeC experiment

I * 12:00 Close up
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Evolution of a single ion imprint in 4-cell 8-meter PCA
3D SPACE code
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CeC ICFA mini-workshop has key-note by Ya. Derbenev: how he conceived the idea
http://case.physics.stonybrook.edu/index.php/ICFA workshop CeC

In the nut-shell, the idea came from looking at the s “transient term” in the drag-force in 1978
Derbenev’s second Doctoral thesis, which differs from the first stationary term

. B _Zzez 3, K kv , exp(—i(w—kv)t)
« F(t) = fdk:z 2 (0—Fkv)0e(@)/0w

W=Wg

Courtesy of Ya. Derbenev
With Im(w.)>0 the term is growing

Derbenev asked the question: can one amplify the micro-bunching induced by hadrons,
Derbenev called the process “Coherent Electron Cooling” or CeC — it includes any type of
Instability used for amplifying the hadron imprint.

Coherent elctron Cooler is nothing else that stochastic cooling using electric field induced
by micro-bunching in electrob beam. CeC with chicane-based amplified is CeC not MBEC

Y.S. Derbenev, Proceedings of the 7" National Accelerator
Conference, V. 1, p. 269, (Dubna, Oct. 1980)

Coherent electron cooling, Ya. S. Derbenev, Randall
Laboratory of Physics, University of Michigan, MI, USA, UM
HE 91-28, August 7, 1991

Ya.S.Derbenev, Electron-stochastic cooling, DESY , Hamburg,
Germany, 1995 ..........



http://case.physics.stonybrook.edu/index.php/ICFA_workshop_CeC

How to cool transversely : a simple case
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Can use a non-achromatic transport (time of flight dependence)
or transverse beam separationto coupfe longitudinal and transverse cooling




Critical conditions for the stochastic cooler

v' Linearity: Amplifier must be
linear (no saturation) and low
noise

v" Overlapping: Amplified signal
induced by individual particle in
the modulator (pick-up, sensor)
must overlap with the particle in
the kicker

\ v' Bandwidth: Does not matter

“icker how high is the gain of the
amplifier, cooling decrement per
turn can not exceed 1/N, where
N, is number of the particles
fitting inside the response time
of the system: 1~ 1/Af

Noise: noise in the stochastic
cooling system should not
significantly exceed system
signal introduced by shot noise
in the hadron beam

. Sensor
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LY
Beam of '\
antipptons .

Scanned at the American
Institute of Physics \/

S. van der Meer
1984 Nobel physics
prize

RF stochastic cooling is
reaching its limits at ~

S. van der Meer, Rev. Mod.Phys. 57, (1985) p.689
) S. van der Meer, 1972, Stochastic ggoling of betatron oscillations is ISR,
10 GHz bandwidth CERN/ISR-PO/72-31



CeC schemes

Litvinenko, Derbenev, PRL 2008 <Ti\'\
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CeC proof of principle experiment at RHIC

Common section with RHIC

CeC “kicker” CeC FEL amplifier ~ CeC modulator D09-1€g:
4 quads 3 helical wigglers 4 quads 2 dipoles 154 1oy 1.25 MV
b ds .1 Me Low energy transport SRE photo-gun

3 qua

SRF linac beam-line
with 5 solenoids

agwom RF cavities

IR diagnostics
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CeC experiment goals

« Main - demonstration of Coherent electron Cooling of an Au bunch circulating in RHIC
« Second - comprehensive 3D simulations of CeC

« Third - comparison of simulations and experiment

We designed, built it and commissioned

*  We took advantage of available equipment from DoE’s SBR program, DoE BES project at SBU and our UK
collaborators

« All through the years CeC was strongly supported by C-AD personnel and management



