# EIC High Gradient Actively Shielded Nb3Sn Quadrupole

Michael Anerella Brookhaven National Laboratory November 7, 2019







## Collaboration

- BNL (M. Anerella) design, fabrication, test
- LBNL (G. Sabbi) 3-D analysis, consultation on assembly loading
- Jlab (T. Michalski) parts fabrication & procurement, testing participation



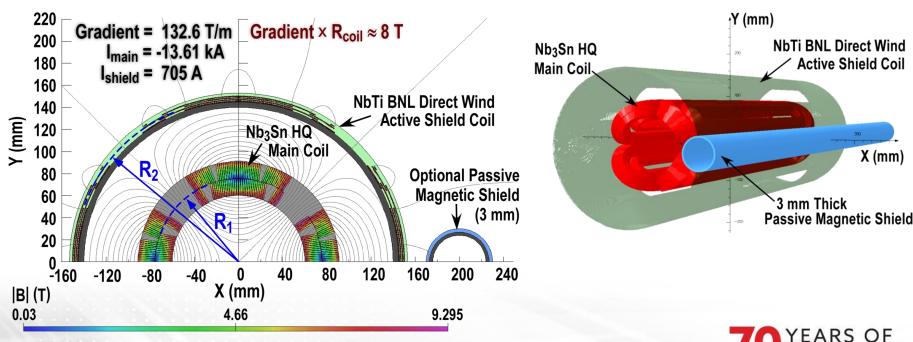




## Design and Prototyping of Superconducting EIC – Interaction Region Magnets

| Funding Source | PI          |    | R&D Panel<br>Priority Rating |
|----------------|-------------|----|------------------------------|
| FY17           | M. Anerella | 28 | Hi-C                         |

 The panel identified the validation of magnet designs associated with high-acceptance interaction points by prototyping as a key area that is common for all EIC concepts (p. 41)

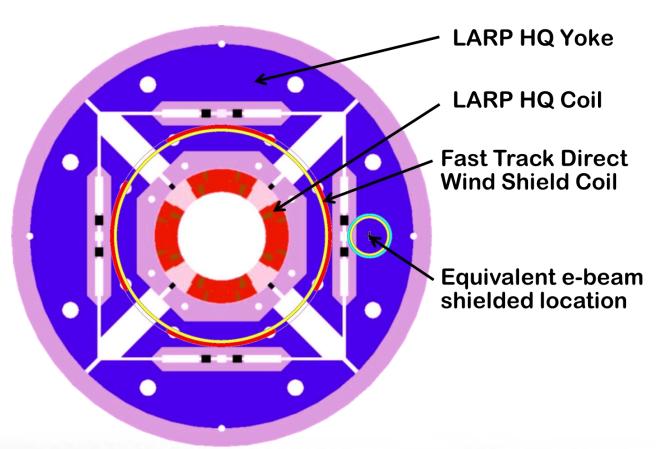







## Overview

- Hadron IR quads need large apertures & high gradients.
- Must protect e-beam from large external B-fields.
- Solution is to use actively shielded coil geometry [1].







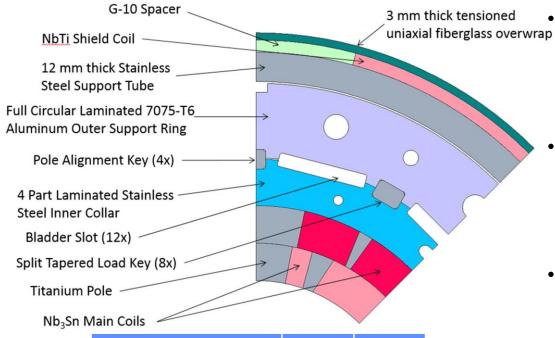

## Perspective

Why not use existing, e.g., LHC High Luminosity Upgrade technology/designs?



Electron beam cuts through magnetic / mechanical structure

120mm LHC Accelerator Research Program (LARP) Nb<sub>3</sub>Sn High Gradient Quad








## Design

### Compact mechanical structure "Proof of Principle", i.e., NOT a specific IR solution



| Design Parameters     | Unit | Value |
|-----------------------|------|-------|
| Clear aperture        | mm   | 120   |
| Gradient              | T/m  | 133   |
| Peak Field            | T    | 9.3   |
| Current (main coil)   | kA   | 13.6  |
| Current (shield coil) | kA   | 0.7   |

Magnet uses tested Nb<sub>3</sub>Sn (LARP) 120mm Rutherford main coils inside a (Ø1mm 7 strand NbTi) Direct Wind shield coil.

In this way we leverage LARP high field Nb<sub>3</sub>Sn R&D experience to make a prototype test with minimal risk, investment and time.

 The shield coil provides zero field at the electron beam and reduces the net gradient of the main coil by 7% and also reduces the main coil's net outward Lorentz force (which is unlike a magnetic yoke which would increase the force experienced by the main coil).







## Status

#### BNL

- Magnet, assembly tooling, testing tooling designs are complete
- Assembly tooling fabrication is complete
- Testing tooling fabrication is underway
- 15cm long mockup is underway (details next slide)

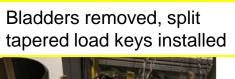
#### **LBNL**

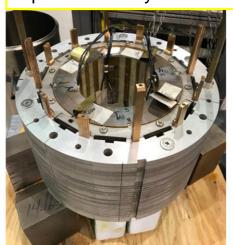
 2D model is complete and first results from the 3D model were presented in a video meeting in September (more on following slide)

#### **JLab**

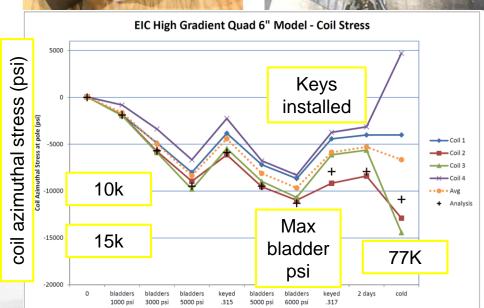
 1<sup>st</sup> set of parts fabrication nearly complete, balance of parts fabrication underway (more on following slide)



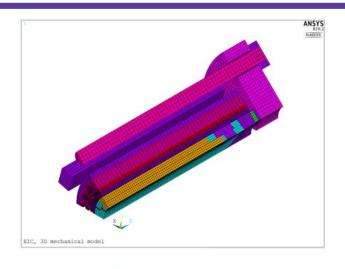


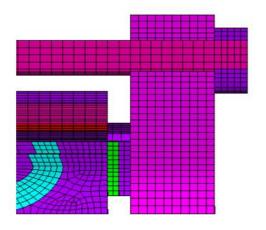




## 15cm mockup


- 2-D experimental confirmation of mechanical structure
- 1<sup>st</sup> results good 300K assembly data, ~ ½ of strain gauges failed at
- Short focused R&D effort completed to reliably bond gauges to titanium coil poles
  - Room temperature cure
  - Optimized choice of epoxy
  - Developed improved cleaning & surface preparation
- Ready now for final assembly & thermal cycle
- Additional valuable "lessons learned" – load key opening from bladder pressurization limited by end effects → reliefs introduced at magnet ends to increase assembly efficiency

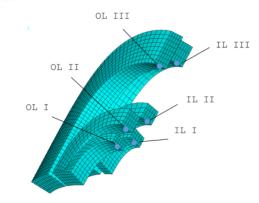




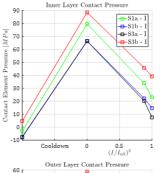


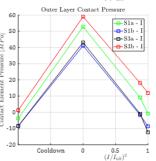




## LBNL 3D analysis excerpts






3D Model – could help to understand the performances of the long. loading

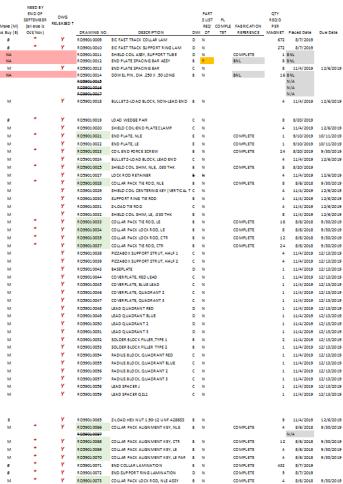

#### Courtesy G. Vallone



How the preload affects the contact in the ends?

Contact pressure/tension between coil and poles/spacers.






Discussions to continue...





## JLab progress



#### Courtesy T. Michalski

## Managing the bulk of parts fab:

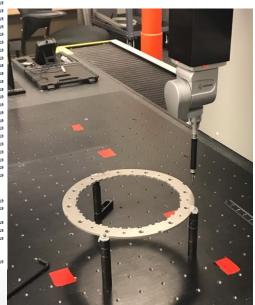

- 1<sup>st</sup> deliveries due 10/19
- Balance requested
   12/19







Figure 2: Misc. components, keys, rods, shims, end load bolts



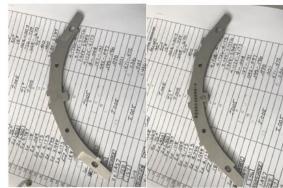



Figure 3: Coil Collar Lamination





70 YEARS OF DISCOVERY

## **Budget**

#### **BNL**

|                         | FY 2018     | FY 2019     | Total       |
|-------------------------|-------------|-------------|-------------|
| a) Funds allocated      | \$1,140,000 | \$1,140,000 | \$2,280,000 |
| b) Actual costs to date | \$128,638   | \$496,892   | \$625,530   |

#### **LBNL**

|                         | FY 2018   | FY 2019   | Total     |
|-------------------------|-----------|-----------|-----------|
| a) Funds allocated      | \$100,000 | \$100,000 | \$200,000 |
| b) Actual costs to date | \$ 25,031 | \$ 69,027 | \$ 94,238 |

#### **JLab**

|                         | FY 2018   | FY 2019  | Total     |
|-------------------------|-----------|----------|-----------|
| a) Funds allocated      | \$218.0k  | \$218.0k | \$436.0k  |
| b) Actual costs to date | \$163.85k | \$0.0k   | \$163.85k |





## Working Schedule

| D  | WBS     | % Complete | Task Name                                  | Work      | Duration | Start       | Finish       | 2020                               |
|----|---------|------------|--------------------------------------------|-----------|----------|-------------|--------------|------------------------------------|
|    |         |            |                                            |           |          |             |              | Sep Oct Nov Dec Jan Feb Mar Apr Ma |
| 1  | 1       | 64%        | High Gradient Actively Shielded Quadrupole | 8,124.22  | 457 days | Wed 8/1/18  | Fri 5/29/20  |                                    |
| 2  | 1.1     | 94%        | Design                                     | 2,262.85  | 248 days | Wed 8/1/18  | Mon 7/29/19  |                                    |
| 10 | 1.2     | 70%        | Parts Fabrication                          | 431.2 hrs | 332 days | Wed 8/29/18 | Tue 12/31/19 | -                                  |
| 17 | 1.3     | 63%        | Installation                               | 320 hrs   | 312 days | Thu 9/27/18 | Tue 12/31/19 |                                    |
| 22 | 1.4     | 100%       | receive/inspect HQ coils at LBNL           | 590 hrs   | 259 days | Mon 10/1/18 | Mon 10/14/19 | -                                  |
| 25 | 1.5     | 0%         | Assembly                                   | 2,504 hrs | 100 days | Fri 11/8/19 | Tue 4/7/20   | -                                  |
| 26 | 1.5.1   | 0%         | main quad                                  | 1,320 hrs | 60 days  | Tue 12/3/19 | Mon 3/2/20   | -                                  |
| 27 | 1.5.1.1 | 0%         | install strain gauges                      | 0 hrs     | 20 days  | Tue 12/3/19 | Thu 1/2/20   |                                    |
| 28 | 1.5.1.2 | 0%         | collar test assembly                       | 0 hrs     | 5 days   | Fri 1/3/20  | Thu 1/9/20   |                                    |
| 29 | 1.5.1.3 | 0%         | assemble in structure                      | 0 hrs     | 10 days  | Fri 1/10/20 | Fri 1/24/20  |                                    |
| 30 | 1.5.1.4 | 0%         | diassemble                                 | 0 hrs     | 5 days   | Mon 1/27/20 | Fri 1/31/20  | •                                  |
| 31 | 1.5.1.5 | 0%         | reassemble coils / install collars         | 0 hrs     | 10 days  | Mon 2/3/20  | Fri 2/14/20  |                                    |
| 32 | 1.5.1.6 | 0%         | assemble structure                         | 0 hrs     | 10 days  | Tue 2/18/20 | Mon 3/2/20   |                                    |
| 33 | 1.5.2   | 0%         | shield quad                                | 760 hrs   | 60 days  | Fri 11/8/19 | Mon 2/10/20  | •                                  |
| 65 | 1.5.3   | 0%         | magnet assembly                            | 424 hrs   | 26 days  | Tue 3/3/20  | Tue 4/7/20   | -                                  |
| 72 | 1.6     | 0%         | Magnet Test                                | 1,102.17  | 38 days  | Wed 4/8/20  | Fri 5/29/20  | -                                  |
| 73 | 1.6.1   | 0%         | prepare for test                           | 86.4 hrs  | 8 days   | Wed 4/8/20  | Fri 4/17/20  | •                                  |
| 80 | 1.6.2   | 0%         | Cold Test                                  | 710 hrs   | 23 days  | Fri 4/17/20 | Tue 5/19/20  | -                                  |
| 91 | 1.6.3   | 0%         | breakdown test                             | 96 hrs    | 8 days   | Wed 5/20/20 | Fri 5/29/20  |                                    |





Testing schedule may shift to avoid AUP testing conflict

