Polarized 3He++ Ion Source Development at BNL

Nuclear Physics Accelerator R&D PI Meeting Anatoli Zelenski, BNL November 13-14, 2018

Acknowledgements

G. Atoian, E.Beebe, D.Raparia, J.Ritter, BNL R.Milner, M. Musgrave, MIT

Polarized 3He++ ion source development at BNL

Funding Source	PI	R&D Report Priority #	R&D Panel Priority Rating	Total \$
FY17 Base and Additional	Anatoli Zelenski	6	Hi-A	\$190K BNL + \$135K MIT

The only ion beam species that requires R&D and experimental demonstration is the generation and acceleration of a polarized ³He beam. A robust and high quality R&D program is underway as a collaborative effort between BNL and MIT and results are very promising. This R&D (if successful)

could already contribute to the existing science program at BNL. It is proposed to accelerate a polarized ³He beam in RHIC in 2020, which will provide a full validation of this technical component for the EIC. This proposed R&D includes upgrades to the EBIS that could result in higher ion beam intensities for heavy ions as well. This work will benefit all concepts that have been proposed.

Polarized 3He++ beam can be accelerated in the AGS and RHIC Using existing "Siberian snakes"

Polarized 3He⁺⁺ Sources. Status 1984

Source	Current	Polarization	Emittance	Beam Energy	Energy Spread	Ion
Birmingham	50 pnA	55-65%	70 mm mrad.	29 keV	100 eV	³ He++
Laval	100 nA	95%	25 mm mrad.	12 keV		³ He ⁺
Rice/Texas A&M	8 µА	11%	10mm mr MeV ^{1/2}	16 keV	10-50 eV	³ He ⁺

No new operational ³He ion sources were built. A number of new ideas were proposed and tested (not successfully).

Spin-exchange and "metastability-exchange" techniques for ³He atoms polarization were greatly improved due to laser development and demanding applications.

Production of polarized ³He⁺⁺ beam in EBIS. BNL-MIT collaboration

- ³He polarization by optical pumping and metastability-exchange technique inside the EBIS in high (5.0T) magnetic field. No polarization losses in 3He⁺ state.
- EBIS is used for <u>efficient ionization</u> and <u>accumulation</u> of polarized 3He⁺⁺ ions to the full capacity of about (2.5-5.0)·10¹¹, 3He⁺⁺ ions.

Proposal of production of polarized ³He⁺⁺ beam in EBIS. A.Zelenski, J.Alessi, ICFA Beam Dynamics Newsletter 30, p.39, (2003)

Requirements to the 3He⁺⁺ source

 Intensity ~ 5.10¹¹ 3He⁺⁺ ions in 20 us pulse ~10.0 mA-peak current

- Maximum polarization > 80%
- Compatibility with the operational EBIS for heavy ion physics.
- Spin flip in the beam transport line.

Polarized 3He++ ion source development

G 3He optical pumping polarization in the high magnetic field.

G 3He purification and filling system for the "open" cell configuration.

Given Structure 3 3 He injection value development

C Extended EBIS development for 3He++ ion production

Spin rotator and 3He-4He polarimeter development in 6.0 MeV beam line.

Principle of EBIS Operation

Radial trapping of ions by the space charge of the electron beam. Axial trapping by applied electrostatic potentials at ends of trap.

The total charge of ions extracted per pulse is ~ (0.5 - 0.8) x (number electrons in the trap ~1.0·10¹²)
 Ion output per pulse is proportional to the trap length and electron current.
 Ion charge state increases with increasing confinement time.
 Output current pulse is independent of species or charge state!

"Extended" EBIS upgrade with new "injector" solenoid for polarized 3He⁺⁺ ion production

Polarization and ionization in high magnetic field will produce $3He^{++}$ ion beam with P $\geq 80\%$

Principle of Metastability Exchange Optical Pumping (MEOP) in ³He

Electron Ion Collider - eRHIC

10

3He optical pumping in high 2.0-5.0T magnetic field

3He optical pumping in high 2.0-5.0T magnetic field

RF-discharge in 3.0 T magnetic field. 3He-cell diameter-25mm

RF-discharge parameters strongly affect maximum polarization.

Optimization of the 3He -cell geometry (smaller diameter?) and electrodes for RF input should improve polarization.

3He-gas purification and filling system

Modified Cryo-pump for 3He purification and storage

3He cryo- purification system built-in CTI-8 cryo-pump. The pump is pumping all gases except for helium to the level below 10⁻⁷ torr

The pump also absorbs quite a significant amount of 3He gas (of about 100 sccm). The absorbed gas is released by the pump vessel heating. This provides gas storage and supply for 3He-cell operation at the optimal pressure value.

3He-gas purification and filling system

Non-magnetic brass pneumatic remotely controlled Isolation Valve

3He cell cleaning by RF discharge

Impurities in 3He gas from the cell walls out-gassing

After 20 hrs Rf –discharge cleaning

600 nm

3He optical spectra

17

3He cell cleaning by RF discharge

Impurities in 3He gas from the cell walls out-gassing

After 20 hrs Rf –discharge cleaning

600 nm

3He optical spectra

18

Probe laser absorption Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two 2³S-2³P transitions to directly probe states^{8,9}

⁸Courtade *et al*, Eur. Phys. J. D 21 (2002).
⁹Suchanek *et al*, Eur. Phys. Special Topics 144 (2007).

Optical pumping and probe lasers layout

Polarization measurements by the probe laser absorption technique

At spin-temperature equilibrium, the populations a_1 and a_2 of the probed Zeeman sublevels satisfy: $a_2/a_1 = e^{\beta} = (1+M)/(1-M)$. As long as this equilibrium prevails, the nuclear polarization is given by:

Polarization measurements

Isolation Valve (IV) open

0.00 0.040 ສັ້ 0.030 -G 0.020-0.010 0.000 -1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.2 0.4 0.6 0.8 0.0 Modulation Voltage 70-60 -50-5 40-P 30-20-10-0 9:35:42.595 AM 10:19:35.727 AM 4/27/2018 4/27/2018 Peak 1 at Zero Polarization 0.028935 Set Zero Peaks Peak 2 at Zero 34.8637 0.032593

34.9%

Isolation Valve (IV) closed

65.1%

Polarization equilibrium

80.3%

Laser power-3.5 W, mirror "in", Pol-90+/-5%

Feasibility study of the small 10 mm diameter drift tube in EBIS with pulsed gas injection in the center

Long, small diameter drift tube works like a 3He storage cell, which reduces gas load to the EBIS vacuum system and increases polarization due to ionization localization in the high magnetic field region.

RHIC OPPIS (Optically-Pumped Polarized H- Ion Source) He-ionizer cell and 3-grid energy separation system

"Electro-dynamic" valve operation principle

Lorentz (Laplace) force moves the flexible conducting plate in the high (~ 3-5 T) magnetic field. For I=10 A, L=5 cm, F=2.5 N. Current pulse duration ~100-500 us

3He -optically-pumped cell in the high magnetic field

Long, small diameter drift tube works like a 3He storage cell, which reduces gas load to the EBIS vacuum system and increases polarization due to ionization localization in the high magnetic field region.

Assembly of the valve and insulator

In the 2.0 T solenoid field the 1.0" long insulator is holding 40 kV voltage difference in between valve and drift tube up to 0.1 Torr He-gas pressure "magnetic isolation".

Pulsed 3He valve operation in 2.0T solenoid. He-flow vs. pulsed current width

Extended EBIS superconducting solenoids, April 2018

5.0 T field, about 1.0 T field at minimal solenoid separation- 25 cm

3He⁺⁺ spin-rotator and polarimeter in the EBIS HEBT line at 6.0 MeV beam energy

The development of the 3He polarizing apparatuses, the spin-rotator, and the nuclear polarimeter at the 3He++ ion beam energy 6.0 MeV (in the high-energy beam transport line after the EBIS drift-tube Linac) is funded by the DOE Research and Development Funds for the Next Generation Nuclear Physics Accelerators Facilities.

3He-4He scattering polarimeter at 5.3 MeV beam energy

Analyzing power in 3He-4He elastic scattering at 5.3 MeV beam energy and 53.6° - angle is close to 100%.

Cost and Schedule

Lab Base R&D	FY10+FY11	FY12+FY13	FY14+FY15	FY16+FY17	Totals
a) Funds allocated				325,000	516,927
b) Actual costs to date				146,138	146,138

Purchaces: \$41k +\$28k-of new pumping and probe lasers are in progress

Activity	Start Date	End Date
Acquisition of Post Doc Researcher		August 2017
Simulation Study on Polarized 3 He	September 2017	March 2018
Interpretation of experimental results and		
development of improvement to the process	April 2018	August 2018

Summary

Polarized 3He++ production is important part of the ongoing extended EBIS "upgrade" project.

□ High polarization of 3He was achieved in the "open" cell in the high magnetic field.

A new technique of 3He purification system (based on cryo-pumping) was developed to meet the strict requirements for high polarization.

□ A new type of the pulsed electromagnetic valve was developed for 3He injection into the drift tube.

□ The 3He++ source, spin-rotator and polarimeter development is funded by DOE grant: F2018-19 Research and Development for Next Generation Nuclear Physics Accelerator Facilities.

FY 2018 Research and Development for Next Generation Nuclear Physics Accelerator Facilities Funding Opportunity Number: DE-FOA-0001848 Announcement Type: Initial CFDA Number: 81.049