Development of a Polarized ³He Ion Source for RHIC

M. Musgrave, C. Epstein, R. Milner

E. Beebe, A. Pikin, J. Ritter, A. Zelenski

- Motivation
- R&D completed and achievements
- Plans

Why a Polarized ³He Source?

- Polarized DIS crucial for study of neutron spin structure
 - PPDFs; tests of QCD, Bjorken sum rule; higher energies

State	Probability
S	88.6%
S'	1.5%
D	8.4%

- S-state ³He: nuclear spin carried by the neutron
- ³He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized ³He ions offer a "polarized neutron beam" for RHIC and a future EIC

Polarized ³He at RHIC

- 3 He's anomalous g-factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring¹

The resonances

¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

RHIC's Electron Beam Ionization Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- **Any** species, switch between species in 1 sec

Source Concept

A. Zelenski and J. Alessi, ICFA Newsletter (2003)

- Polarize ³He gas using optical pumping and feed into EBIS.
- High magnetic field in EBIS should preserve nuclear polarization.
- Source design goals:
 - Polarize to $\sim 70\%$ at 1 torr with 10 W laser
 - Transfer $\sim 10^{14}$ ³He/s to EBIS at 5 T & 10^{-7} torn
 - Deliver 1.5×10^{11} ³He⁺⁺ ions per 20 μ sec pulse

Metastability Exchange Optical Pumping

Depolarization Processes

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+} + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++} + {}^{3}\text{He}^{+}$
 - Recombination: $e^-+^3\mathrm{He}^{++} \to {}^3\mathrm{He}^+$
 - Spin Exchange from Beam

See MIT Senior Thesis of Charles S. Epstein: *Development of a Polarized Helium-3 Ion Source for RHIC using the Electron Beam Ion Source*, June 2013, unpublished.

Optically pump in low or high field?

- Two design possibilities present themselves:
 - Polarize at 30 G in EBIS stray field using field correction, then transfer into EBIS
 - Polarize in EBIS, or nearby, extending field region

MIT Test Lab

- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients⁷
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development⁸

 ⁷Maxwell, Epstein, Milner, NIM A (777), 2015.
 ⁸Maxwell, Epstein, Milner, NIM A (764), 2014.

Overview of R&D Activities

- We have developed the capability to optically pump polarized 3 He gas at both low (${\approx}30$ Gauss) and at high fields (${\approx}4$ Tesla) at both MIT and BNL.
- We have developed a number of polarization techniques: 667 nm polarimeter and pump-probe polarimeter developed, NMR under development.
 - J. Maxwell, C.S. Epstein and R.G. Milner, NIM A **764**, 215 (2014)
- Systems have been built to study polarized gas transfer between Helmholtz coil and solenoidal field. Measurements are in good agreement with expectation.
 - J. Maxwell, C.S. Epstein, and R.G. Milner, NIM A 777, 194 (2015)
- High polarization of order 80% has been measured reproducibly in high field (4 Tesla) optical pumping in spare EBIS solenoid at BNL.

Spin Diffusion through Gradients

Relaxation Time Map for Helmholtz+Solenoid

Low Field Conclusions

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)
- A polarized source using low field MEOP and EBIS is feasible, if not easy
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years
- M. Abboud, Europhys. Lett. 68, 2004
 - 1.5 T; 0.5, 2 W OP laser
 - 1.3, 8, 32, 67 mbar
 - Circles and stars are at 1.5 T, others at low field

BNL High Field Tests

- EBIS spare solenoid at 1, 2, 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
 - AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
 - 5 cm OD, 5 cm long
 - 3 cm OD, 10 cm long

Optical Probe Polarimeter

- High or low field, no calibration required
 - Sweep low power probe laser through two 2^3S-2^3P transitions to directly probe states^{9,10}

⁹Courtade *et al*, Eur. Phys. J. D 21 (2002).

¹⁰Suchanek et al, Eur. Phys. Special Topics 144 (2007).

Optical Probe Polarimeter

- High or low field, no calibration required
 - Sweep low power probe laser through two 2^3S-2^3P transitions to directly probe states^{9,10}

⁹Courtade et al, Eur. Phys. J. D 21 (2002).

¹⁰Suchanek et al, Eur. Phys. Special Topics 144 (2007).

Measured Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

High Field Polarization Results

• Error set at 10% while measurement is investigated

High Field Conclusions

- High polarizations can be reached with MEOP over 1T
 - At high field, OP and ME both still work
 - Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as the 668 nm line used for low field polarization measurement)
 - At high field, transition split allows addressing just one state with OP
- First results for MEOP at 3, 4 T and 1 torr, to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

New "open" ³He-cell and gas system for ³He-cell preparation and filling

³He-gas purification and filling system

³He cryo- purification system built in CTI-8 cryopump.

June 21, He-fill with CP-pumping at 45deg. K. Very clean spectra, no hydrogen 656 nm line!

3.5 torr, Isolation Valve (IV)-open

3.5 torr, Isolation Valve (IV)-closed, P=63%

"Open cell", ³He-3.5 torr, Pol-73%

RF-discharge in 2.0 T magnetic field ³He-cell diameter-25mm

- RF-discharge parameters strongly affect maximum polarization.
- Optimization of the ³He -cell geometry (smaller diameter?) and electrodes for RF input should improve polarization.

The Path Forward

- We have concluded that the high field optical pumping clearly offers the best path forward to realize a polarized
 ³He ion source for RHIC
 - high nuclear polarization of atom
 - high degree of confidence that atom polarization is preserved in injection process
- A plan to implement this in a test configuration has been developed.
- Further, an NMR system has been built to absolutely measure in a second, independent way the high field nuclear polarization. This work is in progress.

Tandem EBIS Concept

- Increase the EBIS intensity by increasing the trap length, using a second solenoid on axis. (Ion output is proportional to trap length).
- Since the same electron beam passes through both magnets/ traps, fewer extra power supplies and controls are needed.
- Uses the same electron gun and electron collector as presently used.

Tandem EBIS, proposed by A. Pikin (BNL) at HIAT 2012 conference.

Proposed Extended Trap EBIS

- This upgrade provides us an opportunity to incorporate features which will allow us to use the EBIS for optimal injection of polarized ³He atoms.
- The design provides space in the bore to incorporate a polarizing cell at the beginning of the first coil.
- The design with a drift tube configuration in the first solenoid can be used as a "gas cell" region.
- This will benefit production of <u>all</u> gaseous beams e.g. He4, Ne, Kr, Ar, Xe, O for NSRL.
- The design will have good vacuum separation between the two magnets, by means of differential pumping.
- The field dip will be minimized to preserve polarization.
- This upgrade is also an opportunity to improve the reliability and maintainability of the conventional EBIS section (improved access to components, improved HV holdoff).

EBIS Upgrade with New Injector Solenoid for Polarized ³He⁺⁺ ion production

BNL-MIT collaboration

Extended EBIS

- Scope
- Add superconducting solenoid for trap length extension, expect +40% Au intensity
- Early completion would shorten time for 2 highest energies in BES-II; also allows for next step in polarized ³He R&D

Cost and funding

FY2016	2017	Total
\$475k	1350k	1.8M
(P)	(P)	

trap length extension

- Schedule
- 2016 start (solenoid acquisition)
- 2020 planned completion largest risk (cost, schedule and performance): superconducting solenoid magnet

Plan for EBIS upgrade for the Run-2019-20

- EBIS upgrade for higher heavy beams intensities and provisions for polarized ³He⁺⁺ ion beam.
- Second solenoid construction and spare solenoid upgrade in 2016-2017.
- At first upgraded EBIS will be used for the Gold run in 2019.
- Development of the ³He source in 2016-2019.
- Polarized ³He⁺⁺ beam into RHIC of 2.0 x 10¹¹ ions/pulse and 70 % polarization in 2020.

Possible Schedule

FY2016

Superconducting magnet for trap length extension ordered

High field optical pumping measurements

Development of ³He gas purification

FY2017

Superconducting magnet for EBIS extension delivered

Spare solenoid upgraded

NMR calibration of high field optical pumping measurements

Development of valve system and vacuum system

Design of feasibility experiment

FY2018

Construction of feasibility experiment

Design of RHIC ³He polarimeter

FY2019

Upgraded EBIS used for Gold run

Completion of feasibility experiment

Construction of RHIC ³He polarimeter

FY2020

Polarized ³He⁺⁺ beam of 2 x 10¹¹ ions/pulse and 70% polarization in RHIC

Summary

- The R&D effort has enabled development of key state-of-the-art MEOP technology at BNL and MIT.
- Studies of ³He spin transport in magnetic field gradients have been carried out and are well understood.
- High field optical pumping has been successfully developed. This
 was not anticipated at the beginning of this project.
- A tandem EBIS looks ideal for optimal ³He polarization delivery and a feasibility demonstration of a realistic source is being developed.
- This will require continued funding of the MIT effort as well as funds at BNL to configure the EBIS extended trap.
- We are on a path to have polarized ³He ions in RHIC early in the next decade.