'%

Electron Cooling for an Electron lon Collider:
Computational Methods and Code Development

Béla Erdelyi
Northern Illlinois University

DOE-NP Accelerator R&D Pl Meeting
November 14, 2016

Electron Collider Ring Baastics

lon Source
Electron Source

z 12 GeV CEBAF

[S

electron bunch

Cooling section

circylator ring icker

SRF Linac dump

* First particle-based proof of principle
demonstration of electron cooling
simulations

* Develop a high-performance code with
capabillities in beam dynamics beyond
cooling

 Applications to electron-ion colliders

Expenditures and Milestones

| FY104FY11 | FY124FY13 | FY144FY15 | FY16 TOTALS |

Funds
Allocated 0+56 55+52=107 50+54=104 50 $317K
Actual Costs
to Date 26 107 104 50 S317K

- FY16 FY17

Shared memory parallelization of FMM
Quarter 1 data structures and integration with
parallel FMM

Electron cooling simulations in the JLEIC
pre-booster at injection

Variable order Picard integrator with

Quarter 2 automatic step size control
parallelization

Electron cooling simulations in the pre-
booster at extraction energy

Binned time step implementation in Setup the re-circulator ring optics and
Quarter 3 parallel bunched cooling in COSY
. . Study electron beam dynamics in the
Parallel PHAD
Quarter 4 arafie I ELET re-circulator ring, set maximum useful

benchmarking and optimizations

turn limits

Cooling as an N-Body Problem I%I
NIy

« Many collective beam dynamics effects can be
cast in the form of an N-body problem: space
charge, intra-beam scattering, electron cloud,
beam-beam, beam-plasma, etc.

 Electron cooling is one of the most challenging:

— Accurate analytical estimates are difficult to come by
— Large particle numbers, but far from statistical limit
— Both attractive and repelling forces

— Close encounters matter

— Relatively slow process

Algorithms in Scientific Computing

from STAM News, Volume 33, Number 4

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book ai-jabr wa’l mugabalah devolved into today’s high school
algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today,
he’d no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, a joint publication of the American Institute of Physics and the JEEE Computer Society. Guesteditors Jack Don-garra of the
University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for
Defense Analyses put togeth-er a list they call the “Top Ten Algorithms of the Century.”

“We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. As with any top-10 list, their selections—and non-selections— are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Withoutfurther ado, here’s the CiSE top-10 list, in chronological order. (Dates and names associated with the algorithms should be read
as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known as the Monte Carlo method.

TheMetropolis algorithm aimstoobtain approximate solutions to numerical problems with unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for
deterministic calculation, it’s fitting that one of its earliest applications was the generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear
programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the “real” problems of industry are often nonlinear; the use
of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant
way of arriving at optimal answers, Although theoretically susceptible to exponential delays, the algorithm
in practice is highly efficient—which in itself says something interesting about the nature of computation.

In terms of wide-
spread use, George . . .
Dantzig's simplex 1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis

methodisamongthe at the National Bureau of Standards, initiate the devel of Krylov sub iteration methods.

most successful al-

gorithms of il time. These algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,

of course, is that A is a huge » x n matrix, so that the algebraic answer x = b/A is not so easy to compute,
(Indeed, matrix “division” is not a particularly useful concept.) Iterative methods —such as solving equations of
theformKx; . | = Kx; + b — Ax;withasimpler matrix K that's ideally “close” to A—lead to the study of Krylov subspaces. Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vectorr, = b — Ax;. Lanczos found a nifty way to generate an orthogonal basis for such a subspace when the matrix
is symmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systems that are
both symmetric and positive definite. Over the last 50 years, numerous researchers have improved and extended these algorithms,
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SIAM Journal on Scientific and istical C ing,in 1986 and 1992,

respectively.)

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach
to matrix computations.

The ability to factor matrices into triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software developers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Journal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

Alston Householder
1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank as the single most important event in the history of computer programming: Finally, scientists

(and others) could tell the computer what they wanted it to do, without having to descend into the netherworld of machine code.
Although modest by modern compiler standards — Fortran I consisted of a mere 23,500 assembly-language instructions —the early
compiler was nonetheless capable of surprisingly sophisticated computations. As Backus himself recalls in a recent history of
Fortran T, II, and III, published in 1998 in the IEEE Annals of the History of Computing, the compiler “produced code of such
efficiency that its output would startle the programmers who studied it.”

1959-61: J.G F. Francis of Ferranti Ltd., London, finds a stable method for computing eigenvalues, known as the QR algorithm.

Eigenvalues are arguably the most important numbers associated with matrices —and they can be the trickiest to compute. It's
relatively easy to transform a square matrix into a matrix that’s “almost” upper triangular, meaning one with a single extra set of
nonzero entries just below the main diagonal. But chipping away those final nonzeros, without launching an avalanche of error,
is nontrivial. The QR algorithm is just the ticket. Based on the QR decomposition, which writes A as the product of an orthogonal
matrix Q and an upper triangular matrix R, this approach iteratively changes A, = QRintoA, , | = RQ,withafew bells and whistles
foraccelerating convergence toupper triangular form. By the mid-1960s, the QR algorithm had turned once-formidable eigenvalue
problems into routine calculations.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N things in numerical or alphabetical order is mind-numbingly mundane. The intellectual challenge lies in devising ways
of doing so quickly. Hoare’s algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element as a “‘pivot,” separate the rest into piles of “big” and “small” elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it’s possible to get stuck doing all N(N' — 1)/2 comparisons (especially if you use as your pivot the first
item on alist that’salready sorted!), Quicksort runs on average with O(N log N) efficiency . Its elegant simplicity has made Quicksort
the pos-terchild of ional lexity.

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton
University and AT&T Bell Laboratories unveil the fast Fourier transform.
Easily the most far-reaching algo-rithm in applied mathematics, the FFT revolutionized
signal processing. The underlying idea goes back to Gauss (who needed to calculate orbits
of asteroids), but it was the Cooley-Tukey paper that made it clear how easily Fourier
transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer
strategy toreduce an ostensibly O(N?) chore to an O(N log V) frolic. But unlike Quick- sort,
the implementation is (at first sight) nonintuitive and less than straightforward. This initself {
gave computer science an impetus to investigate the inherentcomplexity of computational
problems and algorithms.

James Cooley

John Tukey

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integer relation detection algorithm.

The problem is an old one: Given a bunch of real numbers, say x;,%,,. . .,X,,are there integersa,,d,,. . .,a, (not all 0) for which
ax, +ax,+. . .+ax,=07Forn=2,the venerable Euclidean algorithm does the job, computing terms in the continued-fraction
expansion of x,/x. If x,/x, is rational, the expansion terminates and, with proper unraveling, gives the “smallest” integers a, and a,.
If the Euclidean algorithm doesn’t terminate—or if you simply get tired of computing it—then the unraveling procedure at least
provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade’s generalization, although much more
difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find
the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, B, = 3.544090 and B, = 3.564407,
of the logistic map. (The latter polynomial is of degree 120; its largest coefficient is 257°".) It has also proved useful in simplifying
calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

This algorithm overcomes one of the biggest headaches of N-body simulations: the fact that accurate calculations of the motions
of N particles interacting via gravitational or electrostatic forces (think stars in a galaxy, or atoms in a protein) would seem to require
O(N*) computations —one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by
using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant
group of particles on alocal group. A hierarchical decomposition of space is used to define ever-larger groups as distances increase.
One of the distinct advantages of the fast multipole algorithm is that it comes equipped with rigorous error estimates, a feature that
many methods lack.

‘What new insights and algorithms will the 21st century bring? The complete answer obviously won’t be known for another
hundred years. One thing seems certain, however. As Sullivan writes in the introduction to the top-10 list, “The new century is not
going to be very restful for us, but it is not going to be dull either!”

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.

i

o - ———

-

nonsymmetriec Krylov
iterations

int

... the dynamics of particle accelerators actually motivated
the construction of the first symplectic integrators

(Ruth 1983)

y <

Combine:

Numerical integrators with
automatic differentiation

L)

hen

Who invented the great numerical algorithms?

e

fast multipole

o ——

methods

-————

differentiation

Combine:
fast multipole methods with
automatic differentiation

OXTord Ccomputing

ab

g

Main Challenges of an N-Body Solver

» Efficient Force Computation
v Adaptive hierarchical space decomposition
» Accurate Time Stepper

v Variable high order, adaptive integrators with
automatic steps size and order selection, and
dense output

» ADbility to deal with very large N

v/ Distributed, high performance computing on
hybrid architecture supercomputers

» ADbility to deal with long time-scale dynamics
% Time does not parallelize

< “Exact” (scales as O(N?)):
» Particle-particle
<> “Fast” methods (scale as <O(N?)):
» Basis-function method
e Orthogonal polynomials
» Grid-based methods:
* PIC, particle-mesh, FFT-based
e Multi-grid
» Hierarchical space decomposition:
e Tree: cell-particle
e Cluster: particle-cell
e Fast multipole: cell-cell

fi = Vi K(7i,77)a; = VZ K(7i -
=1

The Fast Multipole Method I%I
NIy

Rokhlin and Greengard || Multipole methods and their descendants will be ubiquitous. -
_ _ L.N. Trefethen (Oxford) Predictions for Scientific Computing
arguably provided the first || Fifty Years From Now (Mathematics Today, 2000)

’ - - g . < > 1

numerically defensible
method for reducing the

N-body problem’s

computational complexity.

to O(N)

e |
e
- /
CoMPUTING IN SCIENCE & ENGINEERING - /

January/FEBRUARY 2000 7

FAST MULTIPOLE ALGORITHM

D
A Picture Is Worth a Thousand Words

—_—
—e

:
“'T\ .
11114

NI A A ’ A l ‘T

7\ /‘

a1

AA !-‘,h Al

I LAAT LAA H AAIA lll!l'! 1) ll|||||
Il I mmu Illlllll I MI|| lllll JII‘ lllllllll!llll um I lll l .

Multiple Gaussians in Linear Time and Memory I%I
= I

ol \ |

1t) /\ <\ !". 1= / J .
[(et N J 130 000

' L[4 1] |
v \ ! /',- _ / J 120000

4‘ 'y :
," / \\ \ ,,-’\ .‘.‘\ ‘
| | \ f A\ | ‘ - '
-z b". .,l‘\(}’}- - ’-.(\/) o '\’I.’_' "’4 .\- " : ; 3 . ' i ")'
\ _"_ - \‘\~\ /.’, ‘E‘ff"," ’ ‘ v

Time-Stepping Algorithms

Low vs. high order
« Constant step size vs. adaptive
* Single step vs. multi-step

» Explicit vs. implicit

* Symplectic vs. non-symplectic
» Reversible vs. non-reversible

» Single level vs. hierarchical
Serial vs. parallel

Time Stepping Best Practices

33 Block-step procedure
Let us examine the sequential procedure for one block-step.
(vi) Accumulate the regular force and its time derivative for each
(i) Obtain the next time for integration,
active regular particle ¢ € Lact,r and construct the neighbour list,
tnext — 1g%i<nN(tI’i ¥+ Atl,i), (4)
where ¢1,; and Aty ; are the time of the last irregular f Icula- N i Rij R mi h;
: Li Li f the gular force calcula mj——r= (ij,min > 1,)
tlo(nning/llrlr;egu}iar tm}e-step .oflpa;f‘tlclfe i. i . - FR,i = Z |Rij | , (9)
ii) Make the active particle list for regular and irregular force — .
calculation, JF#i 0 (0therw1$e)
I[Aact,}l = {l | tR,i + Atﬂ,i = tnext} 3 (5)
Lact,r = {2 | t1,s + At1,i = tnext}, 6 N R;; (Rjj R;j)R;;
t,I { | I I t} (6) . mj[la‘z‘jl:a_ z_jlpR‘z‘_Ts ’i,j':| (Rij,min>h'i)
where the subscripts R and I denote regular and irregular terms. FR,i = E *J vJ , (10)
Here, {i | cond.} defines a set of 4 such that it satisfies cond. i 0 (OtheI'WiSC)
(iii) Predict all particles needed for force evaluation.
(iv) Calculate the irregular force and its time derivative for par-
ticle ¢ € Lact, 1, L; = {J | j 75 .i’ R’ij,min < ht} . (1])
Fri=) mj—1r, (7)
JGZL: 7R (vii) Execute the regular corrector. Since the neighbour list IL;
, _ has been updated, the force polynomials should be corrected to re-
: Ri .(Ry-Ri)Ry . .
Fri=) my [IR‘;P —a! J|R'j |’5) 21. ®) flect the difference between the old and new list.
jeL; i i
(v) Apply the corrector for the active irregular particles and de-
cide the next time-step Aty ;.

—

Accelerating NBODY6 with Graphics Processing Units

Keigo Nitadori'* and Sverre J. Aarseth?*

LCenter for Computational Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA, UK

Adaptive, Variable Order Integration

Proposition - Assume that the function h — x(t,, +h) s analytic on a disk of radius
Pm. and that there exists a positive constant M,, such that
M, .
Ul ~ =2, V7 eN.

m
Then, af the required accuracy € tends to 0, the optimal value of h that minimazes the

number of operations tends to

Simo, 2001

Energy Time bins of equal time widths Time bins of equal number of particles

800
20000
9 15000
7 TeV
200 5000
0 \ == — ey 0 l | e §
0 2.x10° 4.x10° 6.x10™° 8.x10"° 0.00001 0 2.x107 4.x107 6.x107 8.x107 1.x107°
Time Step Size Time Step Size
150 400
300
100
1 MeV 200
50 |
100
0 : o 0 ‘ [
0.00 0.05 0.10 0.15 0.00 0.02 0.04 0.06 0.08
Time Step Size Time Step Size
—______

For accuracies of 107 and 10, time step sizes used in
each step are the same, while orders vary between 2 and 7.

e
S

-
@)
)
©
| -
(@)
&)
s
=
@)
=
p)

Hardware Trends

ACCELERATORS / CO-PROCESSORS

B0

70
512 bit vector width (ZMM)

&0

256 bit vector width (YMM)

128 bit vector width (XMM)

64 bit vector width (MMX)

Vector Width >

“Best” Algorithms

IIE&

Comparison of scalable fast methods for long-range interactions

Axel Arnold, Florian Fahrenberger, Christian Holm, Olaf Lenz, Matthias Bolten, Holger Dachsel, Rene Halver, Ilvo Kabadshow, Franz Gahler, Frederik Heber, Julian
Iseringhausen, Michael Hofmann, Michael Pippig, Daniel Potts, and Godehard Sutmann

Our findings suggest that, depending on system size and desired accuracy, the FMM- and FFT-based methods are

most efficient in performance and stability.

2048 : | : 1.2 T T r -
—Intel Sandy Bridge I i
= AMD Abu Dhabi T T T e
- - - I spoctral method

_. 1024/ —BM BG/Q :/ ER : b . P
2 — Fujitsu FX10
= —NVIDIA Kepler
= 512
e Intel Xeon Phi
© 0.8
£ 256- g
£ 5
S ! : : : 2 1. 28 BB BE B
= : : : : = 06
g 128 : R : 2
5 = = 5 =z
= @ - B - - b
2 64 R - H : g 04
o E 2 : : e
4 5 : ©: : :
o zo- on: O: : :
= e e : ac 0.2

o o
= = =: % &

16 = = W =
= =: G =[From SIAM News, Volume 46, Number 6, July/August 2013
e r: o 1
1

CSE 2013) . 8 64 512
How Will the Fast Multipole Method Fare Number of processes

in the Exascale Era?

32 64

]

18/16 1/8 1/4 1}'2 1 2 4 8 6
Operational intensity (flop/byte)

By Lorena A. Barba and Rio Yokota

FMM World Record

3,011,561,968,121 particles

Number of Cores

1 294,912

minutes

Method

1 billion

years

PC JUGENE

m—

Credit: Julich Supercomputing Centre (JSC)

We are developing a parallel code (PHAD)
based on these new methods that will be the
first one capable of particle-based simulations
of electron cooling and other difficult beam
dynamics phenomena with high fidelity,
efficiently.

NORTHERN ILLINOIS UNIVERSITY
|==| Center for Research Computing &
E

Data
Division of Research and Innovation Partnerships
-

NORTHERN ILLINOIS UNIVERSITY

Beam Physics Code Repository

EE N. Illinois Center for Accelerator & Detector Development

Niu

800 000
800 000

600 000
|
600 000

il H !
: “ :
Timme step

|
400 000

400 000
; ,!' . | 'j' |
I
|

|

200 000
LRI ll
|
I
200 O00

i

X W) SaouepImd Hojod

First Particle-Based Cooling Simulation

Summary and Conclusions I%IEE

Computational beam physics plays an important part in modeling and
simulating electron cooling; designing, operating, and improving current and
future particle accelerators and their performance

Algorithmic and hardware improvements multiply, making high fidelity large-
scale problems feasible

Fundamental algorithms and methods are general enough to be
adaptable/applicable to many other beam dynamics problems and different
scientific fields:

Current and next generation high-performance computing systems are well
matched to these algorithms

Entering a new phase of high fidelity electron cooling simulations

