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NTNP Thrust 3: Objectives & Timeline

XSEC 4: Compute electroweak (electron and neutrino) cross sections in A=4-12

using Green’s Function Monte Carlo (GFMC), Short-Time Approximation (STA),

Spectral Function (SF) formalisms.

XSEC 5: Investigate exclusive reactions and relativistic effects induced by
electrons and neutrinos in the STA and SF formalism.
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XSEC: Neutrino-nucleus scattering

XSEC-1 Nucleon elastic form factors with sLapH [CM, AN, AS, AWL]
XSEC-2 N — A transitions with sLapH [CM, AN, AS, AWL]

XSEC-4 |Inclusive processes with QMC, STA, SF [JC, BD, SG, AL, SP, MP,
NR, RS, IT]

XSEC-5 lExclusive processes with STA and SF [JC, SG, AL, SP, MP, NR, RS]




Neutrino Oscillations Systematics
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Unprecedented theoretical accuracy in v-Ar cross section
required to achieve sensitivity to CP violation at DUNE.

A precise determination of neutrino-nucleus cross
sections is required to extract v-oscillation parameters.

Oscillation experiments report large systematic uncertainties
associated with neutrino-nucleus interactions.

DUNE CP violation sensitivity
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Neutrino Cross Section Anatomy
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Building Blocks from LQCD

Nucleonic form factors

Transition form factors

Pion production amplitudes
Two-nucleon couplings (strong and EW)
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Nucleon form Resonance Two-body Quark and gluon
factors production currents PDFs

Courtesy of M. Wagman

Snowmass WP: Theoretical tools for neutrino scattering: interplay between lattice QCD,
EFTs, nuclear physics, phenomenology, and neutrino event generators; arXiv:2203.09030


https://arxiv.org/abs/2203.09030

Quantum Monte Carlo Methods

Variational (VMC) and Green’s Function Monte Carlo (GFMC) Methods solve the many-body
Schrodinger equation, retain the complexity of many-nucleon correlations

H-= Z——V2+ZLU+ > Vi

i<j 1<j<k

And many-nucleon electroweak currents

Oa(q) =) 0 (q)+ > _ 0 (q

i 1<j

Two-body operators describe the interaction of the probe with pairs of correlated nucleons




Lepton-Nucleus Scattering

QMC'’s effort has been extensively addressed to study
inclusive QE electroweak processes

Nuclear Response Function
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Longitudinal Response 0"(q) = p(q)
Electron scattering
Transverse Response 0" (q) = j(q)

Two-nucleon correlations and currents required to
explain electron scattering data in the QE region,
including the Interference term

one + two-body interference  (j; ji; vi;) > 0
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Green’s Function Monte Carlo Method

Exploits integral properties of the Response Function to avoid calculations of the final
states. The Response Function is obtained inverting the integral Laplace transform.

éa(q, T) :/ dwe™" R,(q,w)

el
GFMC exact in the QE region

Two-body currents give the enhancement
Based on a non-relativistic approximation

Treats only inclusive processes
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Lovato, Rocco et al , PRX.10 (2020)



GFMC Recent Developments
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LAB-frame Active nucleon Breit-frame
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Lorentz Boost connects the two frames

R p(w,q) = B, [8] B [B] R}, (W, a’")

Inclusion of relativistic effects in GFMC inclusive response functions

Lovato, Rocco et al



GFMC New Results

Nikolakopoulos, Lovato, and Rocco,

PRC109(2024)

Electron-'2C scattering
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Beyond Inclusive Processes
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Current effort directed to include relativistic effects
and accommodate for exclusive processes



Short-Time Approximation

Use VMC in the STA to calculate the Nuclear Response Function in real time,
propagating only pairs of correlated nucleons.

> dt 1 (w ; —1
Ra(q, w) = / — el +El)t<\Iji‘OIx(q)e Htoa(Q)‘\I’i> Electron scattering from “He

oo 2T
Transverse Density ¢ = 500 MeV/c

Is in good agreement with exact GFMC in the QE region

em) [MeV 2]

Two-nucleon dynamics (correlation & currents) accounted for

D(e,

Allows to examine two-nucleon final state dynamics

Can be extended to describe exclusive channels

Can accommodate for relativistic effects at the vertex

Pastore et al. PRC101(2020)044612



E = 0.62 GeV. 0 = 60°
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Spectral Function

Uses a factorization scheme to calculate the nuclear cross section in terms of cross sections for
single-bound nucleons.

P(k,E) [GeV™*]

doy = | dEd*k donP(k, E)

P(k,E) encodes the intrinsic properties of the nucleus
P(k,E) is calculated using QMC methods

Relativistic effects fully accounted for at the vertex

Can describe exclusive processes (pion-prodroduction [%4)

ROCCO et a| 0. Benhar et al, Rev.Mod.Phys. 80 (2008)



SF New Results

Steinberg, Rocco, and Lovato, arxiv:2312.12545 (2024)

Inclusion of Interference term in the Extended SF Formalism
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Summary

XSEC 4: Compute electroweak (electron and neutrino) cross sections in A=4-12 using Green’s Function

Monte Carlo (GFMC), Short-Time Approximation (STA), Spectral Function (SF) formalisms. On trak

XSEC 5: Investigate exclusive reactions and relativistic effects induced by electrons and neutrinos in the

STA and SF formalism. On track

ToDOs: AFDMC calculations of xsec in A>12 systems, Exploit SF and STA to study exclusive processes

(e.g., pion-production and resonance region)

Needs: precise inputs for hadronic dynamics (electroweak & strong couplings, nucleonic form factors,

transition form factors ...)

Thank you!
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XSEC: Neutrino-nucleus scattering

XSEC-1 Nucleon elastic form factors with sLapH [CM, AN, AS, AWL]
XSEC-2 N — A transitions with sLapH [CM, AN, AS, AWL]

XSEC-4 Inclusive processes with QMC, STA, SF [JC, BD, SG, AL, SP, MP,
NR, RS, IT]

XSEC-5 Exclusive processes with STA and SF [JC, SG, AL, SP, MP, NR, RS]




