

Radiative corrections to β decay in Effective Field Theory

2024 Topical Collaboration Principal Investigators' Exchange Meeting May 2nd, 2024

EFT objectives and key steps

YEAR 1: Primary objectives and key steps leading to them

BETA-2 Develop EFT formalism for A=2 systems to $O(G_F\alpha)$

- Y1 Compute A = 2 weak transitions in pionless EFT and chiral EFT to $O(G_F\alpha)$, including sub-leading corrections in the chiral counting in Q/Λ . [LANL,UW]
- Y1 Identify the two-body transitions operators that need to be included in consistent many-body calculations to a given order. [LANL,UW]

YEAR 3: Primary objectives and key steps leading to them

BETA-2 EFT analysis of radiative corrections to few-body systems Y2 EFTs analysis of radiative corrections to *pp* fusion. [LANL, UTK, UW] Y3 EFTs analysis of radiative corrections to muon capture on deuterium. [LANL, UTK, UW] **BETA-3** Calculation of δ_C , δ_{NS} in low-A systems with various methods – benchmarking Y3 Calculation of δ_C , δ_{NS} corrections with QMC methods. [ANL, LANL & WUSTL]

• Exploit the hierarchy of scales in β decay and organize decay rate in an expansion in

$$\alpha, \alpha_s, \epsilon_{\chi} = \frac{m_{\pi}}{\Lambda_{\chi}}, \epsilon_{\neq} = \frac{Q}{m_{\pi}}$$

• Exploit the hierarchy of scales in β decay and organize decay rate in an expansion in

$$\alpha, \alpha_{s}, \epsilon_{\chi} = \frac{m_{\pi}}{\Lambda_{\chi}}, \epsilon_{\neq} = \frac{Q}{m_{\pi}}$$

• in perturbative regime, state of the art EFT tools to resum $\log \Lambda_{\chi}/m_W$ at higher accuracy

• Exploit the hierarchy of scales in β decay and organize decay rate in an expansion in

$$\alpha, \alpha_{s}, \epsilon_{\chi} = \frac{m_{\pi}}{\Lambda_{\chi}}, \epsilon_{\neq} = \frac{Q}{m_{\pi}}$$

- in perturbative regime, state of the art EFT tools to resum $\log \Lambda_{\chi}/m_W$ at higher accuracy
- low energy EFTs to factorize photons with different virtuality

• Exploit the hierarchy of scales in β decay and organize decay rate in an expansion in

$$\alpha, \alpha_{s}, \epsilon_{\chi} = \frac{m_{\pi}}{\Lambda_{\chi}}, \epsilon_{\neq} = \frac{Q}{m_{\pi}}$$

- in perturbative regime, state of the art EFT tools to resum $\log \Lambda_{\chi}/m_W$ at higher accuracy
- low energy EFTs to factorize photons with different virtuality
- hard: $(q_{\gamma}^0, \vec{q}_{\gamma}) \sim \Lambda_{\chi}$. Need input from LQCD
- potential $(q_{\gamma}^0, \vec{q}_{\gamma}) \sim (0, m_{\pi})$ and soft $(q_{\gamma}^0, \vec{q}_{\gamma}) \sim (m_{\pi}, m_{\pi})$. Derive transition operators for *ab initio* calculations
- ultrasoft: $(q_{\gamma}^{0}, \vec{q}_{\gamma}) \sim Q$. Long distance dynamics, see nucleus as a whole

V. Cirigliano, W. Dekens, EM, O. Tomalak, PRD 108 (2023) 5, 053003

- 1. From m_W to Λ_{χ}
- correct anomalous dimension at $\mathcal{O}(\alpha^2)$ \checkmark
- 2. From quarks to nucleons
- representation of $\chi {\rm PT}~ \mathcal{O}(\alpha)$ LEC in terms of hadronic objects with full tracking of the scale and scheme dependence \checkmark

$$g_{V}(\mu_{\chi}) = \overline{C}_{\beta}^{r}(\mu) \left[1 + \overline{\Box}_{\text{Had}}^{V}(\mu_{0}) - \frac{\alpha(\mu_{\chi})}{2\pi} \left(\frac{5}{8} + \frac{3}{4} \ln \frac{\mu_{\chi}^{2}}{\mu_{0}^{2}} + \left(1 - \frac{\alpha_{s}}{4\pi} \right) \ln \frac{\mu_{0}^{2}}{\mu^{2}} \right) \right]$$
$$\overline{\Box}_{\text{Had}}^{V}(\mu_{0}) = -e^{2} \int \frac{i d^{4}q}{(2\pi)^{4}} \frac{\nu^{2} + Q^{2}}{Q^{4}} \left[\frac{T_{3}(\nu, Q^{2})}{2m_{N}\nu} - \frac{2}{3} \frac{1}{Q^{2} + \mu_{0}^{2}} \left(1 - \frac{\alpha_{s}(\mu_{0}^{2})}{\pi} \right) \right]$$

- 3. From Λ_{χ} to m_e
- consistent NLL resummation by identifying $\mathcal{O}(\alpha^2)$ anomalous dimension from HQET literature

X. D. Ji and M. Ramsey-Musolf, '91 ; V. Gimenez, '92; D. J. Broadhurst and A. G. Grozin, '99

• & removing unphysical scale dependencies in the "Fermi function"

$$\Gamma_n = \frac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} (1+3\lambda^2) \cdot f_0 \cdot (1+\Delta_f) \cdot (1+\Delta_R), \qquad \lambda = g_A/g_V$$

 new prescription for the phase space corrections captures O((απ)ⁿ) corrections and accurate up to O(α²)

 $\Delta_f = 3.573(5)\%$

• radiative corrections with NLL resummation of all large logs

$$\Delta_R = 4.044(27)\%$$

error dominated by nonperturbative $\overline{\Box}_{\mathrm{Had}}^V(\mu_0)$

• using the most precise experimental input on neutron lifetime and g_A (τ_n from UCN τ and λ from PERKEO-III)

 $V_{ud}^{n, \text{ best}} = 0.97402(2)_{\Delta_f}(13)_{\Delta_R}(35)_{\lambda}(20)_{\tau_n}[42]_{\text{total}},$

approaching superallowed precision

EFTs for nuclear decays

V. Cirigliano, W. Dekens, J. de Vries, S. Gandolfi, M. Hoferichter, EM, arXiv:2405.xxxxx

• diagrams as (c) and (f) sensitive to potential and soft photon modes, not present in 1-nucleon case

EFTs for nuclear decays

1. proved an EFT factorization formula

 $\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} = \frac{2(G_{F}V_{ud})^{2}}{(2\pi)^{5}}W(E_{e},\mathbf{p}_{e},\mathbf{p}_{e},\mathbf{p}_{\nu})\,\tilde{C}(E_{e})\,\bar{F}(\beta,\mu_{\chi})\left[1+\tilde{\delta}_{R}'(E_{e},\mu_{\chi})\right](1-\bar{\delta}_{C})\left[1+\tilde{\delta}_{\rm NS}(E_{e},\mu_{\chi})\right]\left[C_{\rm eff}^{(g_{V})}(\mu_{\chi})\right]^{2},$

- μ_{χ} acts as a renormalization/factorization scale, separating contribs. from different virtualities
- $C_{
 m eff}^{(g_V)}$ encodes contributions from hard photons (g_V) and soft photons down to $\mu_\chi \sim m_\pi$
- δ_{NS} ("nuclear structure dependent corrections") and δ_C ("Coulomb corrections") can be understood as arising from potential modes in chiral EFT
- \overline{F} ("Fermi function") and δ'_R ("Sirlin function" + $\mathcal{O}(\alpha^2)$) capture long distance, ultrasoft photon exchanges

EFTs for nuclear decays

1. proved an EFT factorization formula

 $\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} = \frac{2(G_{F}V_{ud})^{2}}{(2\pi)^{5}}W(E_{e},\mathbf{p}_{e},\mathbf{p}_{e},\mathbf{p}_{e},\mathbf{p}_{e},\mu_{\chi})\left[1+\tilde{\delta}_{R}'(E_{e},\mu_{\chi})\right](1-\bar{\delta}_{C})\left[1+\tilde{\delta}_{\mathrm{NS}}(E_{e},\mu_{\chi})\right]\left[C_{\mathrm{eff}}^{(g_{\nu})}(\mu_{\chi})\right]^{2},$

- μ_{χ} acts as a renormalization/factorization scale, separating contribs. from different virtualities
- $C_{
 m eff}^{(g_V)}$ encodes contributions from hard photons (g_V) and soft photons down to $\mu_\chi \sim m_\pi$
- δ_{NS} ("nuclear structure dependent corrections") and δ_C ("Coulomb corrections") can be understood as arising from potential modes in chiral EFT
- \overline{F} ("Fermi function") and δ'_R ("Sirlin function" + $\mathcal{O}(\alpha^2)$) capture long distance, ultrasoft photon exchanges
- 2. resummation of log m_e/m_{π}
- derived anomalous dimension of $C_{\text{eff}}^{(g_V)}$ at $\mathcal{O}(\alpha)$, $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha^2 Z(Z+1))$
- showed that the scale dependence $C_{\rm eff}^{(g_V)}$ matches log in the Sirlin function, and "nuclear radius" log in Fermi function

$\delta_{\textit{NS}}$ in chiral EFT

3. transition operators for δ_{NS} at $\mathcal{O}(G_F \alpha \epsilon_{\chi})$ and $\mathcal{O}(G_F \alpha^2)$

$$\mathcal{V}^{0} = \mathcal{V}_{0}^{\text{mag}} + \mathcal{V}_{0}^{\text{rec}} + \mathcal{V}_{0}^{\text{CT}}, \qquad \delta_{\text{NS}} = rac{2}{M_{F}} \langle f | \mathcal{V}_{0} | i
angle$$

• long distance part very close to classical formalism by J. Towner and I. Hardy

$$\mathcal{V}_{0}^{\text{mag}}(\mathbf{q}) = \sum_{j < k} \frac{e^{2}}{3} \frac{g_{A}}{m_{N}} \frac{1}{\mathbf{q}^{2}} \left(\sigma^{(j)} \cdot \sigma^{(k)} + \frac{1}{2} S^{(jk)} \right) \left[(1 + \kappa_{p}) \tau^{+(j)} P_{p}^{(k)} + \kappa_{n} \tau^{+(j)} P_{n}^{(k)} + (j \leftrightarrow k) \right]$$

• need contact interactions at $\mathcal{O}(G_F \alpha \epsilon_{\chi})$

$$\mathcal{V}_0^{\text{CT}} = \textbf{e}^2 \big(\textbf{g}_{V1}^{\text{NV}} \textbf{O}_1 + \textbf{g}_{V2}^{\text{NV}} \textbf{O}_2 \big),$$

need to be fitted jointly to V_{ud} , or matched to LQCD/dispersion theory

First ab initio calculation of δ_{NS} on ¹⁴O

- calculated ME of \mathcal{V}_0 in A = 6 and A = 14 with Variational and Auxiliary Field Diffusion Monte Carlo $\delta_{NS}(^{14}O)\Big|_{\text{EFT+QMC}} = -(1.76 \pm 0.88_{\text{LEC}} \pm 0.35_{\text{trunc}}) \cdot 10^{-3}$ $\delta_{NS}(^{14}O)\Big|_{\text{shell model}} = -(1.96 \pm 0.50) \cdot 10^{-3}$ first *ab initio* calculation of δ_{NS} !
- we treat short-distance operators as an error
- need full theory uncertainty quantification (vary Hamiltonian, cut-off, *ab initio* method) to go beyond uncontrolled shell-model error

Next steps

- · derive transition operators at higher orders, to test convergence and theory errors
- uncertainty quantification for δ_{NS} and δ_{C}

LA-UR-24-24057

Next steps

- establish framework for joint fits to V_{ud} , g_{V1}^{NN} and g_{V2}^{NN}
- need ab initio methods with same nuclear interactions across the chart

NTNP Coll. has all the expertise to do this!

- collaboration with experimentalists to motivate higher precision in light nuclei (¹⁰C, ¹⁸Ne)
- and to carry out global fit

Conclusion

achieved objectives for Y1, and on track on Y2

including *pp* fusion and few-body processes

- making fast progress on the QMC calculations of $\delta_{\rm NS}$ in light nuclei
- EFT framework can systematize calculations of radiative corrections to β decays
- provides the glue between LQCD, dispersive and *ab initio* methods in effort towards controlled theory errors

$$\Gamma_n = rac{G_F^2 |V_{ud}|^2 m_e^5}{2\pi^3} (1+3\lambda^2) \cdot f_0 \cdot (1+\Delta_f) \cdot (1+\Delta_R), \qquad \lambda = g_A/g_V$$

 new prescription for the phase space corrections captures O((απ)ⁿ) corrections and accurate up to O(α²)

$$\Delta_f = 3.573(5)\%$$

• radiative corrections with NLL resummation of all large logs

$$\Delta_R = 4.044(27)\%$$

error dominated by nonperturbative $\overline{\Box}_{\mathrm{Had}}^{V}(\mu_{0})$

using the PDG input

$$V_{ud}^{n, \text{ PDG}} = 0.97430(2)_{\Delta_f}(13)_{\Delta_R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}}$$