Machine Learning—Examples from TUNL Particle Accelerators

Y. K. Wu TUNL and Duke University January 30, 2020

Work supported by U.S. DOE Grant: DE-FG02-97ER41033

DoE Nuclear Physics User Facilities

https://science.osti.gov/np/Facilities/User-Facilities https://www.anl.gov/sites/www/files/2018-12/ATLAS_floor_plan_Dec2018.pdf https://www.jlab.org/physics

TUN

HIGS/TUNL: Accelerator Facility

Institution: TUNL and Duke University

Country: US

Energy (MeV): 1 – 100

Accelerator: Storage Ring, 0.24 – 1.2 GeV

Laser: FEL, 1060 – 190 nm (1.17 – 6.53 eV) Total flux: $10^7 - 3x10^{10}$ g/s (max ~10 MeV) Spectral flux: 10³g/s/eV (max ~10 MeV) Status: User Program

Research: Nuclear physics, Astrophysics, National Security

HIGS: an Electron-Photon Collider

I. Goodfellow, Y. Bengio, A. Courville, "Deep Learning," 2016. www.deeplearningbook.org

Artificial Intelligence (AI): The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. ML algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

ML → Narrow AI (ANI, part of Weak AI)

- Focus on a single/limited task
- Real-time response
- Based on a specific data set
- Cannot perform outside designed task
- Examples: IBM's Watson, Siri, Google Assistant/Translate, AlphaGo

AI: The Oxford Dictionary of Phrase and Fable, 2nd Ed. (2006) ML: https://en.wikipedia.org/wiki/Machine_learning https://en.wikipedia.org/wiki/Weak_AI

Learning from Data—Data-driven

SAS Institute, 1998 https://blogs.sas.com/content/subconsciousmusings/2014/08/22/looking-backwards-looking-forwards-sas-data-mining-and-machine-learning/ https://www.analyticsvidhya.com/blog/2015/07/difference-machine-learning-statistical-modeling/

Contrast between statistical analysis and machine learning

Value at risk from customer churn, telecom example

Classic regression analysis

Isobar graph facilitated by machine learning: warmer colors indicate higher degrees of risk

Drivers: A

Machine Learning:

An algorithm that can learn from data without relying on rules-based programming.

Statistical Modeling:

Formalization of relationships between variables in the form of mathematical equations.

McKinsey Quarterly, No. 3, 2015

Mathematical Models	Machine Learning	
Advantages Expert knowledge => good solutions rapidly Input => Output with less computation Exact solution possible Reliable and consistent as constrained by model First principle approach => better shield against algorithm bias 	 Advantages "Intelligence acquisition" with refinement automated Account for things not considered originally, but happen regularly 	
 Disadvantages Need expert knowledge and expert => requiring actual understanding of process and phenomenon Critical, rarely occurring details => model complexity Fine detail model => intense computation Missing factors in the model: noise, drift, disruption, etc. Less robust in real-world 	 Disadvantages In reality, automation is difficulty—training requires model tweaking by an expert Need a lot of historical data Model training is computation intensive Results not often predictable Solution may not be exact, with bias from the modelers 	
Example: Predict where a baseball player would hit a ball • Build a math model using the laws of physics	Example: (The same baseball example) • Build a machine learning algorithm (model)	
 Convert it to a computational model Input: ball initial position, velocity, air resistance, etc. Output: good prediction for where the ball will land 	 Feed in player's previous data: input: pitch speed, placement, etc. outcome: where the ball landed Use the model to predict an outcome of a new input 	

https://www.leansystems.co/blog/machine-learning-vs-mathematical-modelling Company founded by Sebastien Roy (U. Montreal) et al. (2016)

- **Types of ML Algorithms**
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
 - Self learning
 - Feature learning
 - Sparse dictionary learning
 - Anomaly detection
 - Association rules

ML Models

- Artificial neural networks
- Decision trees
- Support vector machines
- Regression analysis
- Bayesian networks
- Genetic algorithms

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

- Anomaly detection and machine protection
- System Modeling
- Virtual Instrumentation / Virtual Diagnostics
- Tuning, Control, and Rapid Switching Between Operating Conditions
- Advanced Data Analysis

Auralee Edelen, Christopher Mayes, Daniel Bowring, Daniel Ratner, Andreas Adelmann, Rasmus Ischebeck, Jochem Snuverink, Ilya Agapov, Raimund Kammering, Jonathan Edelen, Ivan Bazarov, Gianluca Valentino, Jorg Wenninger, **Opportunities in Machine Learning for Particle Accelerators**, https://arxiv.org/abs/1811.03172v1 (2018)

ICFA beam dynamics mini-workshop: Machine learning applications for particle accelerators (SLAC, 2018)

2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators (PSI, 2019)

ML-at-SLAC 1st Workshop (2019)

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

Anomaly detection and machine protection

Acc. Problem	ML Technique; Data	Outcome	Notes
 "Quench" detection: monitoring LHC SC magnets [1] 	 Data: archived log resistive voltage data of SC magnets LSTM recurrent neural networks (RNN) Long Short-Term Memory (LSTM) → long-range dependencies Explore latent patterns of the data 	 Predicting future voltage sequence: best RMSE=0.00104 (128 LSTM cells, 16 previous steps, batch size 2048) Anomaly detection to be implemented using FPGA Current system using pre- programmed triggers highly dependable As an addition or enhancement 	 Trained on common PC Future use with FPGA (~kHz) not used in operation
 "Quench" detection: monitoring XFEL SC RF cavity [2] 	 Data: physics model based 2D residue data Support Vector Machine (SVM) to find the 2D boundary 	 Physics model based method works well: 100% accuracy with 5000 measurements SVM is an addition and needs further improvement 	• (2D linear system)
 Faulty BPM detection at LHC [3] 	 Data: turn-by-turn BPM data Autoencoder: Bad BPM has a higher loss Clustering: Density-based spatial clustering 	 Cannot be used alone Used in addition to SVD analysis 	

[1] M. Wielgosz et al. "Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets," Nucl. Instrum. Meth. A867, 40–50 (2017),

[2] A.S. Nawaz *et al.* "Self-organzied critical control for the european xfel using black box parameter identification for the quench detection system." 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol). IEEE, 2016.

[3] E. Fol, and P. Henning. "Evaluation of machine learning methods for LHC optics measurements and corrections software". Diss. Hochschule, Eng. Econ., Karlsruhe, 2017.

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

System Modeling

Acc. Problem	ML Technique; Data	Outcome	Notes
 Switch beam parameters in a THz FEL: injector and beamline tuning [1] 	 Data: simulated data including parameters of RF, quadruples, Twiss parameters, emittance, etc. Reinforcement learning with two Neural Networks 	 In one iteration the controller can set up the machine to achieve close to the desired twiss parameters (initial study) Further study to optimize emittacne and other parameters 	Sim. using Superfish and PARMELA
 Predicting beam parameters: a gun injector at Fermilab [2] 	 Data: simulated solenoid strengths, gun phases, and cathode images Hybrid of a Convolutional Neural Network (CNN) and a fully-connected NN 	 Predicting downstream twiss parameters, emittance, etc. Mean errors between 0.4% and 3.1% of the parameter ranges 	Sim. using Superfish and PARMELA; Plan to train the model using measured data.

Areas of ML Applications for Particle Accelerators

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

Virtual Instrumentation / Virtual Diagnostics

	Acc. Problem	ML Technique; Data	Outcome	Notes
•	Predicting X-ray FEL pulse properties at LCLS [1]	 Data from single-shot diagnostics (fast and slow) for electron beam and X-ray Linear, Quadratic, Support Vector Regression (SVR), ANN 	 Energy mean error below 0.3 eV (for 530 eV photon); pulse delay below 1.6 fs; spectral shape agreement at 97% Applicable to predict for each shot of XFEL at MHz 	Tested with exp. data
•	Prediction of electron beam longitudinal phase space (LPS)/current profile at (1) FACET-II and (2) LCLS [2]	 Multilayer perceptron (MLP) regressor from scikit-learn (an open source ML library) Data for training and validation: from simulated non-intercepting diagnostics and LPS images for FACET-II; five nondestructive measurements and LPS images measured using a transverse deflecting cavity for LCLS 	 Predicting electron beam shot-to-shot 2D LPS (nondestructive) Prediction performance depends critically on the accuracy and resolution of diagnostic inputs Good agreement between the predicted and simulated/measured LPS profiles 	Simu. and Exp.

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

Tuning, Control, and Rapid Switching Between Operating Conditions

	Acc. Problem	ML Technique; Data		Outcome	Tech.
•	Switch beam parameters in a THz FEL: injector and beamline tuning [1] (Also in System Modeling)	 Neural networks trained by reinforcement learning Data from PARMELA simulation 	•	Encouraging results: with 1 iteration the controller can achieve close to the correct Twiss parameters for test beam with energies in 3–6 MeV	Simu.
•	Online undulator tapering optimization at LCLS [2]	 NN with reinforcement learning Other techniques: Robust Conjugate Direction Search (RCDS); Mutil-Object Genetic Algorithm (MOGA); Particle Swarm Optimization (PSO); Extreme Seeking (ES); Simulated Annealing (SA); Markov Chain Monte Carlo (MCMC) 	•	Optimal zig-zag taper, the pulse energy of 5.5 keV self-seeded FEL is doubled	Exp.
•	Tuning quad settings of LCLS beamline [3] Noise issue in optimization and to incorporate physics model	 Bayesian optimization using Gaussian Process Existing technique: Nelder-Mead optimization Hyperparameters generated using historical data 	•	Prelim results: achieve faster optimization than hand tuning and other optimization methods Bayesian optimization depends strongly on hyperparameters	Exp.

[3] M. McIntire et al. "Bayesian Optimization of FEL Performance at LCLS,", p. 2972, Proceedings of IPAC2016.

Areas of ML Applications for Particle Accelerators

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

• Tuning, Control, and Rapid Switching Between Operating Conditions

Acc. Problem	ML Technique; Data	Outcome	Tech.
 Temperature control of cooling water for a normal conducting RF gun [1] at Fermilab Goal: +/- 0.02 K 	 Model-based predictive control (MPC); linearized A rudimentary neural network used to relate cavity temp. to input water temp. 	 Reaching +/- 0.02K control in 5 minutes vs ~23 min using the existing feedforward/PI controller 	Exp. (no RF power)
• Cooling control for a RFQ [2] at Fermilab	 Model-based predictive control (MPC) Neural network: Input: water temperatures at various locations, water flow rates, ambient temp. and humidity; Output: RFQ resonant frequency 	 Neural network model performs well in predicting the RFQ resonant frequency due to changes in the cooling system and amount of RF heating More training for other operation modes, and with finer granularity 	Exp. (pulsed operation)
 Ion source control for RFT-30 cyclotron at KAERI Highly nonlinear and complex 	 Artificial neural network based ion source model Generalized predictive control (GPC) Simulated annealing algorithm 	 Found a subset of ion source parameters, but already an efficient way to control and analyze the source Will train the ion source model with diverse experimental data 	Simu. using exp data

Areas of ML Applications for Particle Accelerators

"Opportunities in Machine Learning for Particle Accelerators," https://arxiv.org/abs/1811.03172v1 (2018)

Advanced Data Analysis

Acc. Problem	ML Technique; Data	Outcome	Technology
• Measuring muon phase space volume change at MICE [1]	 Data: simulated data including the muon parameters and a LiH absorber Kernel Density Estimation (KDE) 	Observed changes of phase space density and volume	Sim. using MAUS and G4beamline
• Study of the short electron bunch longitudinal dynamics/ microbunching instability due to the emitted THz coherent synchrotron radiation (CSR) in storage ring KARA [2]	 Clustering using the k-means method Four clusters in the longitudinal bunch profiles Each profile with a cluster label is mapped to a CSR power in time sequence Data for training and validation: simulation based on the Vlasov-Fokker-Planck equation 	 Discovery of a correlation between the electron bunch longitudinal micro-structure and the emitted CSR power Indication of dependencies of the micro-structure properties on various machine parameters such as beam current, synchrotron frequency, and vacuum gap. 	Simu.

TUNL

Summary

Observations:

- Many ML models and algorithms have been explored
- Successful ones typically involve well-defined problems and/or small systems with limited complexity
- As an add-on or improvement to existing techniques/methods
- Many have not yet been used for real-time applications

Opportunities to Advance/Expand Machine Learning using Particle Accelerators

• A new type of machine learning centered around complex physical systems — the accelerator, not only the data, plays a critical or even dominant role

- Develop more powerful machine learning techniques by combining physics knowledge and data models
- Take advantage of a rich set of realtime information from accelerator operation