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DoE Nuclear Physics User Facilities

https://science.osti.gov/np/Facilities/User-Facilities
https://www.anl.gov/sites/www/files/2018-12/ATLAS_floor_plan_Dec2018.pdf
https://www.jlab.org/physics

JLab, CEBAF

https://www.anl.gov/sites/www/files/2018-12/ATLAS_floor_plan_Dec2018.pdf
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Storage Ring

Facility/Project: HIGS

Institution: TUNL and Duke University

Country: US

Energy (MeV): 1 – 100 

Accelerator: Storage Ring, 0.24 – 1.2 GeV

Laser: FEL, 1060 – 190 nm (1.17 – 6.53 eV)
Total flux: 107 – 3x1010g/s (max  ~10 MeV)
Spectral flux: 103g/s/eV (max  ~10 MeV)
Status: User Program

Research: Nuclear physics, Astrophysics, 
National Security

Accelerator  Facility
160 MeV Linac pre-injector
160 MeV – 1.2 GeV Booster injector
240 MeV – 1.2 GeV Storage ring
FELs: OK-4 (lin), OK-5 (circ)
HIGS: two-bunch, 40 – 120 mA (typ)

HIGS/TUNL: Accelerator Facility                             

HIGS: an  Electron-Photon HIGS: an  Electron-Photon ColliderCollider
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AI and Machine Learning

I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning,” 2016.
www.deeplearningbook.org

Artificial Intelligence (AI): The theory and 
development of computer systems able to 
perform tasks normally requiring human 
intelligence, such as visual perception, speech 
recognition, decision-making, and translation 
between languages.

Machine learning (ML) is the scientific study of 
algorithms and statistical models that computer 
systems use to perform a specific task without 
using explicit instructions, relying on patterns 
and inference instead. ML algorithms build a 
mathematical model based on sample data, 
known as "training data", in order to make 
predictions or decisions without being explicitly 
programmed to perform the task.

AI: The Oxford Dictionary of Phrase and Fable, 2nd Ed.  (2006)
ML: https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Weak_AI

ML→ Narrow AI (ANI, part of Weak AI)
● Focus on a single/limited task
● Real-time response
● Based on a specific data set
● Cannot perform outside designed task
● Examples: IBM’s Watson, Siri, Google 

Assistant/Translate, AlphaGo
ANI, General AI (AGI), Super AI (ASI)

Narrow AI (ANI)

Feature learning

(ANN,
Artificial Neural Network)

https://en.wikipedia.org/wiki/Machine_learning
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AI and Machine Learning

SAS Institute, 1998
https://blogs.sas.com/content/subconsciousmusings/2014/08/22/looking-backwards-looking-forwards-sas-data-mining-and-machine-learning/
https://www.analyticsvidhya.com/blog/2015/07/difference-machine-learning-statistical-modeling/

Knowledge 
Discovery in 
Databases

Learning from Data—Data-driven

https://blogs.sas.com/content/subconsciousmusings/2014/08/22/looking-backwards-looking-forwards-sas-data-mining-and-machine-learning/
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AI and Machine Learning

McKinsey Quarterly, No. 3, 2015

Contrast between statistical analysis and machine learning

McKinsey&Company

Machine Learning: 
An algorithm that can learn from data without 
relying on rules-based programming.

Statistical Modeling:
Formalization of relationships between 
variables in the form of mathematical equations.



 7

AI and Machine Learning

Mathematical Models Machine Learning

Advantages
• Expert knowledge => good solutions rapidly
• Input => Output with less computation 
• Exact solution possible
• Reliable and consistent as constrained by model
• First principle approach => better shield against 

algorithm bias

Advantages
• “Intelligence acquisition” with refinement 

automated
• Account for things not considered originally, but 

happen regularly

Disadvantages
• Need expert knowledge and expert => requiring actual 

understanding of process and phenomenon
Critical, rarely occurring details => model complexity
Fine detail model => intense computation 

• Missing factors in the model: noise, drift, disruption, 
etc.

• Less robust in real-world

Disadvantages
• In reality, automation is difficulty—training requires 

model tweaking by an expert
• Need a lot of historical data
• Model training is computation intensive
• Results not often predictable
• Solution may not be exact, with bias from the 

modelers
 Example: 
 Predict where a baseball player would hit a ball
• Build a math model using the laws of physics
• Convert it to a computational model
• Input: ball initial position, velocity, air resistance, etc.
• Output: good prediction for where the ball will land

 Example:  
 (The same baseball example) 
• Build a machine learning algorithm (model)
• Feed in player’s previous data:

input: pitch speed, placement, etc.
outcome: where the ball landed

• Use the model to predict an outcome of a new input

https://www.leansystems.co/blog/machine-learning-vs-mathematical-modelling
Company founded by Sebastien Roy (U. Montreal)  et al. (2016)

https://www.leansystems.co/blog/machine-learning-vs-mathematical-modelling


 8

AI and Machine Learning

Types of ML Algorithms
 Supervised learning

 Unsupervised learning

 Reinforcement learning

 Self learning

 Feature learning

 Sparse dictionary learning

 Anomaly detection

 Association rules

ML Models

 Artificial neural networks

 Decision trees

 Support vector machines

 Regression analysis

 Bayesian networks

 Genetic algorithms
ML: https://en.wikipedia.org/wiki/Machine_learning

https://en.wikipedia.org/wiki/Machine_learning
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AI and Machine Learning

Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” 
https://arxiv.org/abs/1811.03172v1 (2018)

 Anomaly detection and machine protection

 System Modeling

 Virtual Instrumentation / Virtual Diagnostics

 Tuning, Control, and Rapid Switching Between Operating Conditions

 Advanced Data Analysis

Auralee Edelen, Christopher Mayes, Daniel Bowring, Daniel Ratner, Andreas Adelmann, Rasmus Ischebeck, Jochem Snuverink, Ilya 
Agapov, Raimund Kammering, Jonathan Edelen, Ivan Bazarov, Gianluca Valentino, Jorg Wenninger, Opportunities in Machine Learning 
for Particle Accelerators,   https://arxiv.org/abs/1811.03172v1 (2018)

ICFA beam dynamics mini-workshop: Machine learning applications for particle accelerators (SLAC, 2018)

2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators (PSI, 2019)

ML-at-SLAC 1st Workshop (2019)

https://arxiv.org/abs/1811.03172v1
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AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

 Anomaly detection and machine protection

[1] M. Wielgosz et al. “Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets,” Nucl. Instrum. Meth. A867, 40–50 (2017),
[2] A.S. Nawaz et al. "Self-organzied critical control for the european xfel using black box parameter identification for the quench detection system." 2016 3rd Conference on Control and Fault-Tolerant 
Systems (SysTol). IEEE, 2016.
[3] E. Fol, and P. Henning. “Evaluation of machine learning methods for LHC optics measurements and corrections software”. Diss. Hochschule, Eng. Econ., Karlsruhe, 2017.

 Acc. Problem ML Technique; Data Outcome Notes
● “Quench” 

detection: 
monitoring LHC 
SC magnets [1]

• Data: archived log resistive 
voltage data of SC magnets

• LSTM recurrent neural 
networks (RNN)

• Long Short-Term Memory 
(LSTM)→ long-range 
dependencies

• Explore latent patterns of the 
data

• Predicting future voltage 
sequence: best RMSE=0.00104 
(128 LSTM cells, 16 previous 
steps, batch size 2048)

• Anomaly detection to be 
implemented using FPGA

• Current system using pre-
programmed triggers highly 
dependable

• As an addition or enhancement 

• Trained on 
common PC

• Future use 
with FPGA 
(~kHz)

● not used in 
operation

● “Quench” 
detection: 
monitoring XFEL 
SC RF cavity [2]

● Data: physics model based 2D 
residue data

● Support Vector Machine 
(SVM) to find the 2D 
boundary

● Physics model based method 
works well: 100% accuracy with 
5000 measurements

● SVM is an addition and needs 
further improvement

● (2D linear 
system)

● Faulty BPM
detection at LHC 
[3]

● Data: turn-by-turn BPM data
● Autoencoder: Bad BPM has a 

higher loss
● Clustering: Density-based 

spatial clustering

● Cannot be used alone
● Used in addition to SVD 

analysis



AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

 System Modeling

[1] A.L. Edelen, et al. “Using a neural network control policy for rapid switching between beam parameters in an FEL”. Proceedings of the 38th International Free Electron Laser Conference (2017)
[2] A.L. Edelen, et al. “First steps toward incorporating image based diagnostics into particle accelerator control systems using convolutional neural networks”. arXiv preprint arXiv:1612.05662 (2016).

 Acc. Problem ML Technique; Data Outcome Notes

• Switch beam 
parameters in a 
THz FEL: injector 
and beamline 
tuning [1]

• Data: simulated data including  
parameters of RF, quadruples, 
Twiss parameters, emittance, 
etc.

• Reinforcement learning with 
two Neural Networks

● In one iteration the controller 
can set up the machine to 
achieve close to the desired 
twiss parameters (initial study)

• Further study to optimize 
emittacne and other parameters

Sim. using 
Superfish and 
PARMELA

● Predicting beam
parameters: 
a gun injector at 
Fermilab [2]

● Data: simulated solenoid 
strengths, gun phases, and 
cathode images

● Hybrid of a Convolutional
Neural Network (CNN) and a 
fully-connected NN

● Predicting downstream twiss 
parameters, emittance, etc.

● Mean errors between 0.4% and 
3.1% of the parameter ranges

Sim. using 
Superfish and  
PARMELA;
Plan to train the 

model using 
measured data.



AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

 Virtual Instrumentation / Virtual Diagnostics

[1] A. Sanchez-Gonzalez, et al. “Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning”. Nature communications 8.1 (2017): 1-9.
[2] C. Emma et al. "Machine learning-based longitudinal phase space prediction of particle accelerators." Phys. Rev. Accl. and Beams 21, 112802 (2018).

 Acc. Problem ML Technique; Data Outcome Notes

● Predicting X-ray 
FEL pulse 
properties at LCLS 
[1]

● Data from single-shot diagnostics
(fast and slow) for electron beam 
and X-ray

● Linear, Quadratic, Support 
Vector Regression (SVR), ANN

● Energy mean error below 0.3 eV 
(for 530 eV photon); pulse delay 
below 1.6 fs;  spectral shape 
agreement at 97%

● Applicable to predict for each shot 
of XFEL at MHz 

Tested with exp. 
data

● Prediction of 
electron beam 
longitudinal phase 
space (LPS)/current 
profile at  
(1) FACET-II and 
(2) LCLS [2]

●  Multilayer perceptron (MLP) 
regressor from scikit-learn (an 
open source ML library)

● Data for training and validation: 
from simulated non-intercepting 
diagnostics and LPS images for 
FACET-II; five nondestructive 
measurements and LPS images 
measured using a transverse 
deflecting cavity for LCLS

● Predicting electron beam shot-to-
shot 2D LPS (nondestructive)

● Prediction performance depends 
critically on the accuracy and 
resolution of diagnostic inputs

● Good agreement between the 
predicted and simulated/measured 
LPS profiles

Simu. and Exp.
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AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

 Tuning, Control, and Rapid Switching Between Operating Conditions

[1] A.L. Edelen et al. “Using a neural network control policy for rapid switching between beam parameters in an fel,” pp. 406-409,Proceedings of FEL2017.
[2] J. Wu et al. “Recent On-Line Taper Optimization on LCLS,”  p. 229, Proceedings of FEL2017.
[3] M. McIntire et al. “Bayesian Optimization of FEL Performance at LCLS,”, p. 2972, Proceedings of IPAC2016.

 Acc. Problem ML Technique; Data Outcome Tech.
• Switch beam 

parameters in a THz 
FEL: injector and 
beamline tuning [1]
(Also in
 System Modeling)

• Neural networks trained by 
reinforcement learning

• Data from PARMELA simulation

• Encouraging results: with 1 
iteration the controller can 
achieve close to the correct 
Twiss parameters for test beam 
with energies in 3–6 MeV

Simu.

• Online undulator 
tapering 
optimization at LCLS 
[2]

• NN with reinforcement learning
• Other techniques: Robust Conjugate 

Direction Search (RCDS); Mutil-Object 
Genetic Algorithm (MOGA); Particle Swarm 
Optimization (PSO); Extreme Seeking (ES); 
Simulated Annealing (SA);  Markov Chain 
Monte Carlo (MCMC)

• Optimal zig-zag taper, the pulse 
energy of 5.5 keV self-seeded 
FEL is doubled

 Exp.

• Tuning quad settings 
of LCLS beamline [3]

• Noise issue in 
optimization and to 
incorporate physics 
model

• Bayesian optimization using Gaussian 
Process
Existing technique: Nelder-Mead 
optimization

• Hyperparameters generated using 
historical data

Prelim results:
• achieve faster optimization than 

hand tuning and other 
optimization methods 

• Bayesian optimization depends 
strongly on hyperparameters

 Exp.
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AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

 Tuning, Control, and Rapid Switching Between Operating Conditions

[1] A.L. Edelen et al. “Initial experimental results of a machine learning-based temperature control system for an RF gun,” p. 1217, Proceedings of IPAC2015.
[2] A. Edelen et al. “Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response,” p. 4131, Proceedings of IPAC2016.
[3] Y.B. Kong et al. “Predictive ion source control using artificial neural network for rft-30 cyclotron,” NIM A806, p. 55 (2016).

 Acc. Problem ML Technique; Data Outcome Tech.
• Temperature control  

of cooling water for 
a normal conducting 
RF gun [1] at 
Fermilab

• Goal: +/- 0.02 K

• Model-based predictive control (MPC); 
linearized

• A rudimentary neural network used to 
relate cavity temp. to input water temp.

• Reaching +/- 0.02K control in 5 
minutes  vs ~23 min using the 
existing feedforward/PI 
controller

Exp.
(no RF power)

• Cooling control for a 
RFQ [2] at Fermilab

• Model-based predictive control (MPC)
• Neural network: 

Input: water temperatures at various 
locations, water flow rates, ambient 
temp. and humidity;
Output: RFQ resonant frequency

• Neural network model performs 
well in predicting the RFQ 
resonant frequency due to 
changes in the cooling system 
and amount of RF heating

• More training for other operation 
modes, and with finer granularity

Exp.
(pulsed 

operation)

• Ion source control 
for RFT-30 cyclotron 
at KAERI

• Highly nonlinear
and complex

• Artificial neural network based ion 
source model 

• Generalized predictive control (GPC)
• Simulated annealing algorithm

• Found a subset of ion source 
parameters, but already an 
efficient way to control and 
analyze the source

• Will train the ion source model
with diverse experimental data

Simu.
using exp data



AI and Machine Learning
Areas of ML Applications for Particle Accelerators 
“Opportunities in Machine Learning for Particle Accelerators,” https://arxiv.org/abs/1811.03172v1 (2018)

  Advanced Data Analysis

[1] T.A. Mohayai, P. Snopok, and D. Neuffer. “A Non-Parametric Density Estimation Approach to Measuring Beam Cooling in MICE”. arXiv preprint arXiv:1806.01834 (2018).
[2] T. Boltz et al. "Studies of longitudinal dynamics in the micro-bunching instability using machine learning." IPAC2018, THPAK030. 

 Acc. Problem ML Technique; Data Outcome Technology
● Measuring muon 

phase space 
volume change at 
MICE [1]

• Data: simulated data including 
the muon parameters and a LiH 
absorber

• Kernel Density Estimation 
(KDE)

● Observed changes of phase 
space density and volume

Sim. using 
MAUS and 
G4beamline

• Study of the short 
electron bunch 
longitudinal 
dynamics/ 
microbunching 
instability due to 
the emitted THz 
coherent 
synchrotron 
radiation (CSR) in 
storage ring 
KARA [2]

• Clustering using the k-means 
method

• Four clusters in the longitudinal 
bunch profiles

• Each profile with a cluster label 
is mapped to a CSR power in 
time sequence

• Data for training and validation: 
simulation based on the Vlasov-
Fokker-Planck equation

● Discovery of a correlation 
between the electron bunch 
longitudinal micro-structure 
and the emitted CSR power

● Indication of dependencies of 
the micro-structure properties 
on various machine parameters 
such as beam current, 
synchrotron frequency, and 
vacuum gap.

Simu.
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Summary

Observations:

 Many ML models and algorithms have been explored 

 Successful ones typically involve well-defined problems and/or small systems with 
limited complexity 

 As an add-on or improvement to existing techniques/methods

 Many have not yet been used for real-time applications

Opportunities to Advance/Expand Machine Learning using Particle Accelerators

 A new type of machine learning centered around complex physical systems — the 
accelerator, not only the data, plays a critical or even dominant role

 Develop more powerful machine learning techniques by combining  physics 
knowledge and data models 

 Take advantage of a rich set of realtime information from accelerator 
operation
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