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FRIB is an intensity-frontier facility
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FRIB is expected to deliver 

the largest ion beam power.

• 200 MeV/u Uranium 

• 400 kW beam power 

• High availability

Our efforts to achieve the goal:

• Build reliable hardware and precise installation

• Better model to describe and predict the 

machine

• Effective Machine and Personnel Protection



▪Handling intense, low energy ion 
beams
• Multiple charge state beam dynamics 

with varying Q/A 

• Ensuring low beam losses with robust 
Machine Protection and                                                                 
diagnostics

• Safe operation of liquid lithium charge 
stripper

• 400 kW heavy ion beam target and pre-
separator systems

▪Frequent retuning to support many 
types of rare isotopes and 
experiments
• Each run extends 1-2 weeks

• Efficient tuning of ion source and 
injector

• Efficient tuning of fragment separator

Technical Challenges to Realizing FRIB
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▪There are signals from the first 3 cryomodules Halo Monitor Rings. 

▪Higher sensitivity than Beam Current Monitors

▪The highest shows beam fraction of 210-4 was intercepted with HMRs

Beam Loss Changes with Duty Factor
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10% DF

1 ms, 100 Hz

2.5% DF

5 ms, 5 Hz
0.05% DF

0.1 ms, 5 Hz

Duty Factor-dependent response!

First 3 HMRs at transition 

between MEBT and LS1



Application 1: How to control accelerator
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Machine Model

Measurement, refinement

Optimization, tuning

Physics Model

Data based Model

Parameters in Model:

• Beam parameters

• Element locations

• Machine settings 

• E-/B- Field Profiles

Measured data

• Beam position, 

intensity, energy and 

loss count

• Readback of settings

• Environment data 

(temp, pressure, 

vacuum, etc)



Solenoid Scan Example
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Solenoid

Profile Monitor



Solenoid Scan, Inference Results
Plot every 20 iterations, total 1.2M iterations
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emit_x

[mm-mrad]

βx

[m]
⍺x

emit_y

[mm-mrad]

βy

[m]
⍺y Cxy Cxy’ Cx’y Cx’y’

0.27 4.99 6.01 0.074 1.62 3.44 0.79 -0.47 -0.52 0.25



Quadrupole Scan Example
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3 Quads

Viewer

Measurement Scenario:

➢ Adjusting the voltage of the 3 upstream quadrupoles 

and measure the profile from a viewer right after the 

quadrupoles.

➢ Fitting routine found that there is always discrepancy 

between the model and measurement.

@ Takashi Yoshimoto 



Quad Scan, Result Comparison
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emit_x

[mm-mrad]

βx

[m]
⍺x

emit_y

[mm-mrad]

βy

[m]
⍺y Cxy Cxy’ Cx’y Cx’y’

Bayesian 0.104 2.76 -2.38 0.049 1.37 -0.31 0.26 0.63 -0.08 0.51

Optimizer 0.119 2.76 -2.26 0.05 1.51 -0.42 0.34 0.26 -0.06 0.01

total 500K iterations



▪We have to go far beyond the simple examples to make it useful in FRIB.

▪Involving larger amount of data and higher dimension.
• If we take more measurement at different location, the result solenoid scan can be 
very different and does not have the suspicious behavior.

• Can we get the indication of ‘more measurement needed’ from inference procedure?
»Can we automate the measurement and design expert ‘agents’  

• It seems that the convergence is harder to achieve in this example.  An indicator?

▪Deal with the difference between the model and machine
• We infer the best parameter of the linear model

• Model can not handle all situations by simply adjusting parameter.

• The difference will modelled by Gaussian Process.  

• Comparison of ‘Gaussian Process only’ and ‘Model + Gaussian Process’

Future Work based on Model Inference
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▪Beyond the particle motion, described by Maxwell Equation, we don’t have 
very precise/quick models to predict the data.

▪Modern accelerators with high speed interlink/network usually store gigantic 
amount of data of very high number of dimensions.

▪The performance of the accelerator, on the contrary, are evaluated with small 
amount of parameters
• Beam energy and its stability

• Beam power and its stability

• Radiation and beam loss control

• Machine availability 

▪We plan to study the data driven model to predict the machine behavior and 
increase the performance.

Data Driven Models
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▪Beam Loss Monitors form a network to monitor beamlines for 
particle interception

▪The BLM network has functions: fault detection and fault 
diagnosis

▪Fault detection requires BLMs:
• Fast response for acute losses

• Location near sensitive components

• Located at ‘critical positions’ to trigger Machine Protection response

▪Fault diagnosis requires BLMs:
• Sensitive to diagnose chronic losses and beam tuning errors

• Ability to differentiate between controlled and uncontrolled losses

• Located at ‘discrimination points’ to differentiate spatial loss patterns

Application 2: Identifying Sources of Beam 
Loss
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Schematic of FRIB linac with loss sensitive monitors indicated

We look to answer two 

questions:

1. Do we have sufficient 

detectors in the 

correct places to 

catch all events?

2. Can we use pattern 

recognition with loss 

distribution to identify 

specific failures?



▪Study correlations
• Define critical positions by quantifying BLM positions against specific fault modes resulting in 

losses

▪ IMPACT simulations were generated in each case
• 332 cavity faults generate 241 loss distributions

• 69 solenoids each generate losses

• Each accelerator element is a loss monitor (as far as IMPACT is concerned) – 572 elements

Determining Critical Positions (CPs)
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(Z. Liu, et al., IPAC 2015, TUAC3, p.1356)



▪Calculate correlation. Filter for abs(R) > 0.45 

Use correlations to identify points of high 
sensitivity 

Reduces required number of BLMs
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Analyze events to determine if Critical Position 

network observes all events. 

→ Network completeness with ~7 monitors!

We can identify localized loss areas 

(outlined regions) that reduce required 

number of monitors (for this failure mode). 

Single-cavity failure



▪PCA finds linear combinations of 
elements to diagonalize the 
space, remove degeneracies

▪Use PCA on single-cavity failure 
loss matrix, X572x241

• Dramatic reduction in dimensionality! 
572 -> 1,2 !

▪Pattern recognition problem
• Finds ‘significant features’              

for each fault mode

• Differentiates ‘distinctive       
features’ between fault             
modes

Use PCA to find Discrimination Points
Maximizes variation between patterns
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▪Accelerator health monitoring
•LLRF, HPRF, cavity tuners

•Diagnostic and instrumentation
•Li stripper

•High power target

▪Beamline tuning 
•Ion sources
•Fragment separator optics

•Multi-user configurations

▪Use data driven model to incorporate best understanding 
with measurement data

Future efforts
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▪JLAB/ODU effort on predicting SRF cavity trips or failures is 
directly applicable to FRIB reliability and uptime

▪SLAC has developed tools for longitudinal phase space 
prediction
•Work with authors to import and develop toolkits for NP linacs, EIC needs

Areas for Collaboration
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▪Work at FRIB focuses on several areas and techniques
• Bayesian optimization is used to match model with measurements

• PCA has been used for pattern recognition in loss measurements

▪We look to expand with ANN, Random Forest, and other methodologies
• Assess for specific problems

• Help develop toolkits for community use

▪We are learning from the community and invite collaborative efforts

Summary
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Thank you to Manouchehr and today’s participants 



▪Protect against catastrophic fast beam losses
• Melting threshold ~40 usec

• Fast mitigation requirement 35 usec or faster 

▪Detect and mitigate chronic, low level losses (“1 W/m” standard)
• Prolong SRF cavity lifespan

• Reduce activation of                                                                                           
beamline components

▪Many sources of faults
• LLRF

• Timing, Chopper

• Beam steering and focusing

• Charge stripping and selection

• Target failure

▪MPS detection schemes                                                                     
multilayered in mode and time scales

Need for Robust Machine Protection Systems
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The worst case (uranium beam ~20MeV/u): may 

damage a SS bellow in less than 40 µs   



Test of Applying Bayesian Inference

▪Motivation:
• Some parameters in accelerator can not be 
measured directly

•These parameter can be used in accelerator 
model to predict the machine 

•This can be done with fitting the model to the 
measurement data using optimizers.
»Only results are given, how reliable?

»Prone to be have local minimum problem

»Hard to scale to high dimensional problem

»Depend on the definition of the penalty function

▪Expectations from Bayesian method
•Provide statistics information on reliability

•Better scaling to high dimensional problem

•Less local minimum problem

•Suggest the future experiment
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FRIB Front-End



The Problem to Solve
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The accelerator model starts at the exit of the ion 

source.  The description of initial beam is hard to 

measure directly.  

The linear accelerator model need the following 

matrix to describe the beam property in (x, x’, y, y’) 

phase space, which contains 10 free parameters.

In common accelerator 

language, we rewrite as:



The Problem to Solve, cont’d
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▪We have to determine these 10 parameters using sets of measurements.

▪ The machine settings V=(v1, v2, …, vn) are varied in the measurement and the beam profile 
(second order moments) are recorded by the profile monitor.  In each machine setting, three 
observables are recorded:

Model Machine

Bayesian Theorem 



The Problem to Solve, cont’d
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The likelihood

The prior Uniform / Gaussian / beta prime distributions

We implement the Metropolis-Hasting method in Python to sample the posterior 

distribution. 

The in-house linear model, FLAME, as the accelerator model.  The linear model 

is fast enough to get converge result in ~103 seconds on laptop.


