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• CEBAF is a CW recirculating linac utilizing 418 SRF cavities 

to accelerate electrons up to 12 GeV through 5-passes 

CEBAF

• it is a nuclear physics user-facility capable of servicing 

4 experimental halls simultaneously

• the heart of the machine is the SRF cavities
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• Goal: Superconducting RF Cavity Fault Classifier

• Scope:

Develop and deploy machine learning models to (1) identify cavity and (2) fault

type in a control room application. Investigate models for fault prediction.

• Objective:

Relaying information about which cavity and which type of fault caused a trip

allows operators to retain gradient in other cavities, providing necessary

overhead for meeting high energy goals.

• Source of Funding: Laboratory Directed R&D (LDRD)

• Duration: FY2020 (FY2021 conditional)

Funded Activity
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Funded Activity

• Goal: Superconducting RF Cavity Fault Classifier

• using conventional machine learning tools as well as deep learning architectures, we

have achieved encouraging results for predicting the cavity ID and type of cavity fault

(submitted to IEEE Transactions on Neural Networks and Learning Systems)
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• Goal: Superconducting RF Cavity Fault Classifier

Funded Activity

• a prototype system is currently deployed online and operational
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Data is the Fuel for AI/ML

• the SRF cavity fault classifier work is only possible because of a

specially designed data acquisition system – which required the

coordination of several different groups working together

• getting and then labeling (if necessary) data hard and expensive

• without data we can’t leverage AI/ML

need to be more proactive with machine

measurements

what kind of measurements should we be

doing hourly/daily/weekly?
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2019

• largest contributor to short machine downtime trips (< 5 min.) are RF faults

Improving CEBAF Availability

• significant investment in 

energy reach program 

(cryomodule upgrades, 

plasma processing, re-

furbished linac hard-

ware)
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• Goal: Minimize Radiation Levels Due to Field Emission in an SRF Linac

• Impact:

Improve reliability, availability, and maintainability, reduce personnel radiation dose

and prevent damage to beamline components

• Description:

Minimize field emission by re-distributing the gradients between cavities while keeping

the overall gradient (energy) constant. The problem is complicated and depends on

many factors; field emission can be accelerated downstream and upstream and

gradients, field emission onsets and fault rates are always changing. Field emitted

radiation and activation must be taken into account for gradient optimization.

• Requirements:

A ML model takes as input: gradients and phases, field emission onset and RF fault

rate, cryogenic loads, and radiation levels from newly developed photon and neutron

dose rate meters.

Future Projects

(doi:10.18429/JACoW-IBIC2017-TH1AB1)
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• Goal: Minimize Radiation Levels Due to Field Emission in an SRF Linac

damaged beamline valveRadiation Area damaged magnet and cables

Future Projects
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• Goal: Minimize Radiation Levels Due to Field Emission in an SRF Linac

(doi:10.18429/JACoW-IBIC2017-TH1AB1)

0L04 at constant gradient

0L03-7 lowered by 3 MV/m

0L03-5 raised by 3 MV/m

0L03-6 raised by 3 MV/m

0L03-3 lowered by 3 MV/m

0L03 total gradient 

maintained constant

Radiation is reduced by 

5 orders of magnitude

Future Projects
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Future Projects

• Goal: SRF Cavity Instability Detection

• Impact:

Improve beam availability by automating the process of identifying unstable RF cavities.

• Description:

Use the strength of machine learning’s ability for pattern recognition (particularly in

noisy data sets) to identify RF cavities that go unstable by analyzing recorded signals.

• Requirements:

Faster sampling of RF cavity signals to discern unique signatures – currently use

archived data sampled at ~1 Hz.
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Future Projects

• Goal: SRF Cavity Instability Detection

RF Analyzer Tool

• note, this represents an obvious example

• not all instances are so easily detectable

by an operator
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Field Emission and Particulate Contamination

• root-cause analysis finds particulates are the dominate source of field

emission  particulates on the inner surface of operational cavities are from

external sources (e.g. ion pumps between modules)

• “…have developed a system for characterizing particulate contamination…

conveniently analyzed in a scanning electron microscope (SEM).”

• particulate inventory: led to changes in procedures for tunnel installation

(doi: 10.18429/JACoW-SRF2019-WEPRB097)

• hundreds of spindles collected, hundreds to

thousands of particulates per spindle

• Big Data: a broad term for data sets so large

or complex that traditional data processing

applications are inadequate
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• Goals: SRF Cavity Particulate Identification

SRF Cavity Particulate Counts

• Impact:

Insights into best practices for fabrication, installation and maintenance activities

related to SRF cavities (note, these findings are not only relevant to CEBAF but to other

SRF-based machines as well). Expected improvement in FE onset, yielding higher

usable cavity gradients.

• Description:

Augment current (manufacturer’s) software with AI to more accurately and efficiently

analyze data.

• Requirements:

Sufficiently large set of labeled x-ray intensity data and SEM images from collected

spindles.

Future Projects
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• Goal: SRF Cavity Particulate Identification

Future Projects

Aluminum - AlAlumina – AlO

(courtesy J. Spradlin)
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• Goal: SRF Cavity Particulate Identification

Future Projects

Aluminasilicate – AlSiO Fiberglass

(courtesy J. Spradlin)
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Future Projects

• Goal: Passive Bunch Length Measurement

• Impact:

Provide real-time bunch length information for non-invasive measurements and tuning.

• Description:

Create a so-called “virtual diagnostic” by using a trained AI model in conjunction with

non-invasive beam measurements to provide accurate bunch length measurements (an

otherwise invasive measurement).

• Requirements:

• To get sufficient training data requires many invasive bunch length measurements (to

correlate with non-invasive beam measurements).
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• identify correlations between slowly-updating instruments (e.g. photon

energy, spectral shape of X-ray pulses) and more abundant, quickly-updating

outputs (e.g. readings from BPMs)

• extract information that is of interest to the users about each X-ray pulse

quickly and with high fidelity

(Nature Communications volume 8, article number: 15461)

Future Projects

• Goal: Passive Bunch Length Measurement

https://www.nature.com/ncomms
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Future Projects

• Description:

Utilize viewer-based beam diagnostics and

leverage advances in computer vision for beam

tuning tasks. Multiple synchrotron light monitors

(SLMs) will be installed in CEBAF’s Arc 7 in the

near future and could be used for setup, tuning

and monitoring.

• Requirements:

Sufficient image database corresponding to a

variety of machine conditions for training an AI

model.

• Goal: Computer Vision-aided Beam Tuning

• Impact:

Automate time consuming beam tuning tasks.
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Future Projects

• Goal: Accelerator “Smart Alarm”

• Impact:

Using readily measured data (BPMs, BLMs), identify root-causes for degradation in

machine performance, thereby reducing the time required for beam tuning tasks.

• Description:

Alarm systems are commonly used to indicate when specific machine parameters are

drifting outside their normal tolerances. However, operators are still required to

interpret these alarms in the context of many interacting systems and subsystems and

take corrective action.

• Requirements:

Generate training data by intentionally scanning setpoints that are known to

change/drift (position of laser spot on cathode, cavity gradients and phases, etc.) and

recording downstream responses.
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Future Projects

• Goal: Mobile Diagnostic with Collaborative Autonomy

• Impact:

Improve the efficiency, safety and automation of accelerator operations as well as

providing a platform for novel measurements and data acquisition with greater

resolution than existing static sensors

• Description:

 conduct a general radiation survey before personnel enter the enclosure

 lower potential personnel exposure and reduced survey time

 expand radiation monitoring to higher radiation areas (e.g. accelerator dumps)

 improvement in first line response of in-tunnel system failures

elimination of exploratory controlled access time

• Requirements:

Off-the-shelf hardware (e.g. robot platform, mechanical arm), software/control expertise

(R. Michaud, “Mobile Diagnostic – Drone Use in Accelerator Enclosures”, internal)
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• (adjustable) collaborative autonomy

 operators can inject information

 operators can preempt behavior

• provides exactly the diagnostic needed for field emission studies

 rather than many distributed monitors, have a single mobile diagnostic

• knowledge and experience is highly transferable to other accelerators

Future Projects

• Goal: Mobile Diagnostic with Collaborative Autonomy

(https://alabamanewscenter.com/2019/10/07/southern-research-to-develop-smart-robots-for-next-gen-nuclear-reactors-under-doe-grant/)

https://alabamanewscenter.com/2019/10/07/southern-research-to-develop-smart-robots-for-next-gen-nuclear-reactors-under-doe-grant/
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Future Projects

• Goal: Mobile Diagnostic with Collaborative Autonomy

(doi:10.18429/JACoW-ICALEPCS2017-MOCPL06)

• collaboration with nearby university

• robotics expertise (DARPA challenge)
European XFEL uses a mobile

autonomous robot platform

for performing maintenance

and inspection tasks

(courtesy D. Conner)
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• CEBAF is an operational, large-scale SRF, user-facility

• is a unique testbed to apply AI-driven solutions for a variety of challenges

 University partners are eager to collaborate

 Jefferson Lab is ready to enlarge efforts in AI/ML

• these AI applications have the potential to make CEBAF more efficient

 automate time-consuming, manual tasks

 automate specialized tasks so as to free up subject matter experts

 analyze data and provide results more quickly

 increase beam availability

 minimize damage to beamline components

• with 25+ years of experience operating SRF systems, have expertise on the

entire lifecycle of SRF cavities

 provide unique insights for EIC and other SRF accelerators (LCLS-II, SNS)

Summary
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• government spending on AI projects

AI/ML Trends: Government Spending

(“The AI Index 2019 Annual Report”)
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Thank You.

I gratefully acknowledge contributions from: 

A. Carpenter, D. Conner, B. Freeman, R. Geng, C. Ginsburg, 

R. Kazimi, R. Michaud, Y. Roblin, T. Satogata, A. Shabalina,    

A. Seryi, J. Spradlin, R. Suleiman, D. Turner, S. Wang
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DOE “AI for Science” Town Hall Meetings

Chicago AI for Science Town Hall 

Argonne National Laboratory 

July 22-23, 2019 

Oak Ridge AI for Science Town Hall 

Oak Ridge National Laboratory 

August 20-21, 2019 

Berkeley AI for Science Town Hall

Lawrence Berkeley National Laboratory

September 11-12, 2019 

Washington DC AI for Science Town Hall 

October 22-23, 2019 

Final report will include contributions from 1,000+ participants

350

350

400

400+



Identifying Grand Challenges in Accelerator Science

(based on slide presented at DOE’s “AI for Science” Town Hall Meeting at ORNL)
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AI/ML Trends

(“The AI Index 2019 Annual Report”)

• lots of metrics show to communicate the explosive growth of AI/ML
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AI/ML Trends: Education

(“The AI Index 2019 Annual Report”)

• At the graduate level, AI has rapidly become the most popular

specialization among computer science PhD students in North America,

with over twice as many students as the second most popular specialization

(security/information assurance). In 2018, over 21% of graduating

Computer Science PhDs specialize in AI/ML.

• Industry has become, by far, the largest consumer of AI talent. In 2018,

over 60% of AI PhD graduates went to industry, up from 20% in 2004. In

2018, over twice as many AI PhD graduates went to industry as took

academic jobs in the US.

• In the US, AI faculty leaving academia for industry continues to accelerate,

with over 40 departures in 2018, up from 15 in 2012 and none in 2004.
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AI Growth and Outreach at Jefferson Lab


