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ANS&T Project Overview

Goal:
B Develop radiation detection technologies and
advanced analysis and imaging methods that will
enable the introduction of new 3D gamma-ray
imaging technologies in various fields, ranging from
radiation therapy to nuclear security and fundamental
sciences

Objectives:
B Develop fast and efficient data acquisition system
for multichannel high resolution detectors (segmented
Ge detectors) suitable for imaging.
B Develop data analysis and image reconstruction
algorithms to improve detection and imaging
performance
E Demonstrate impact of the developed technologies
in various fields
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Imaging Applications
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Compact Compton Imager: CCI-2
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» 2 HPGe large DSSD detectors in two cryostats e
& 2" generation digital DAQ

« Each 37+37 strips w/ 2 mm pitch size; 15 mm
thickness; 1.7 keV at 60 keV

Ge Detectors by Mark Amman




CCI-2: Imaging modalities

Compton Camera Imaging Coded Aperture Imaging
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Present imaging performance with CCl-2

Angular resolution 1-2 degrees 23 arcmin
Energy resolution 2 keV 2 keV
Imaging sensitivity 150 keV — 4 MeV 20 keV - 500 keV

Field-of-view 41 0.05mt—0.257




3D Gamma-Ray Imaging for Nuclear
Safeguards
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Safeguards Application
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Current technology
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Measurement of Holdup at the Determination of changes
Rocky Flats Site in holdup inventories in
process plants

Applications of new 3D gamma-ray imaging
system:

B Timely detection of highly-enriched uranium
production in a modern uranium enrichment plant,
E Timely detection of undeclared traces of gamma-
emitting isotopes, indicating undeclared enrichment
or spent fuel reprocessing,
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B Detection of concealed or buried nuclear/chemical Process test bench for reprocessing study in the
.. ) . ] Nuclear Fuel Cycle Safety Engineering Research
process vessels or piping during facility design Facility (NUCEF) -JAEA

information verification (DIV).



= A
% Stand-Off 3D Imaging
3D gamma-ray imaging demonstration measurement

Voxelized model

CClI-2 System
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BERKELEY LAB

Bringing systems from the lab to the field
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Algorithms
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cecrer) |./.} Development of high resolution, low
bower integrated read-out

Signal filtering and data
acquisition will be done on
g ASIC read-out electronics
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Current segmented Ge detection systems require
expensive, bulky, power hungry electronics Die picture of NCI ASIC
(5 mm x 5 mm)

ASIC design by Gianluigi De Geronimo (BNL)
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Die picture of the NCI ASIC
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ASIC board design by Jane Hoberman (UCB/SSL) Test measurements by Cameron Bates



- *\‘ Measured performance of the BNL
NCI ASIC
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In-Beam Gamma-Ray Imaging for lon
Cancer Therapy Verification
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Linear energy deposition (MeV/mm)

In-Beam Gamma-Ray Imaging for lon
Cancer Therapy Verification

Primary brain
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C-12

4.44 MeV
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JC Polf et al. Phys. Med. Biol. 54 (2009) 731-743
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A Preliminary test of In-Beam Gamma-Ray
Imaging for lon Cancer Therapy Verification
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Measurements performed at the 88” cyclotron
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Ge

35 mm FWHM
Gaussian = -I

beam /
Ta collimator (2.5

cmx25cmx0.3
cm with 1 mm dia.
Hole)

- PMM

10 cm
wide gap
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Four W bricks 10 cm x 10
cm x 2.5 cm with 10 cm
gap opening for the beam
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# of Gammas per Proton
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Simulations by Joe Miller and Daniel Bond

10



-

‘ A
rrereeer

BERKELEY LAB

Nuclear Life-Time Measurements using
Compton Back-Projection



-, ]

n

pevie B Nuclear Life-Time Measurements using

Compton Back-Projection
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detectors Simulations by I-Yang Lee
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Further Work

B Test NCI ASIC with DSSD Ge detectors
B Develop a new ASIC optimized for Ge detectors
B Develop 3D image reconstruction algorithms
B Perform modeling to estimate best gamma-ray
signatures and evaluate gamma-ray to dose
correlations
B Perform p therapy verification test measurements
using a 50 MeV proton beam on PMMA at the 88”
cyclotron

B Benchmark simulation

E |[dentify most relevant imaging signatures

E Demonstrate 3D imaging of p-beam
B Continue modeling and perform tests to demonstrate
capability for life-time measurements
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Team
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“The real voyage of discovery
consists not in seeking new
landscapes but in having new eyes”

--Marcel Proust
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Imaging Tasks

g=Af +n

Signal Detection Signal Estimation
(amplitude, position).

Check hypotheses: | .
1. signal present H1 Flndf;, best estimate of ff
2. signal absent HO

Minimize the mean square error:

H,:g=A(f,+f,)+n
H, :g=A(®f,)+n MSE(f,) = E [( - £1)']

E\fi] = f d is the expected value
The ldeal Observer is the likelihood ratio: ] _mﬁp(ﬂ) f

_ P(glH,) MSE(f;) = (BLFF] - E*[A]) + B[] = £)°
p(g]H,) diifr il

Variance bias

A(9)



Dynamic voxelization for 3D imaging

CClI-2 ‘I'
Position 1
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- ; Data Analysis for Compton Imaging:
Overview

Signal WaVEformS Hole arrival at v,

A Electron arrival at v,
& /
Signal Feature Extraction

List of firing segments (E;, t;, a;)

Event Selection Signal Decomposition

List of interactions, (E;, 1;)

Gamma-ray Tracking

Scattering angle 6, scattering
direction s, position r, total energy E

Image Reconstruction

Induced charge signals (mV)

\

=100 0 100 200
Time (ns)

Image
Image-Spectral Analysis O ‘
) o ) ] Sources: Na-22
Threat identification, Diagnostics Positions: X,y,z

Intensities: A



N

reereerm

A
m‘

Detection and imaging efficiency

Photon statistics

Imaged Photons < Imaging efficiency
‘“Tracked Photons ' \ 6%@186keV- 18%@1MeV
Selected Photons '

Photons being detected ) efficiency
75% @2kHz

Photons depositing all energy

Full energy
deposition efficiency
60% @ 186keV-
15%@1MeV

Currently, CCI-2 has a total imaging efficiency of 2-4%



