Neutron Cross Section Covariances for the ENDF/B-VII Library

M. Herman National Nuclear Data Center Brookhaven National Laboratory

Washington DC, August 22-23, 2011

a passion for discovery

Office of Science

Friday, August 19, 2011

Scope of the project Respond to needs of Advanced Fuel Cycle Initiative

- Address issues in the covariance methodology in the resonance as well as fast neutron region
- Develop new methods and codes to evaluate covariances of prompt fission neutron spectra and neutron multiplicities (LANL).
- Produce covariances in the whole energy range up to 20 MeV for 110 nuclei to be included in ENDF/B-VII.1 to be released in December 2011.

2

ANS&T Exchange Meeting Washington DC, August 22-23, 2011

M. Herman

Materials

 110 materials most relevant 	¹ ப	285;	⁹² Mo	109 A a	149 Sm	232Th
to fast reactor R&D	¹¹ ² H	²⁹ Si	⁹⁴ Mo	¹²⁷ I	151 Sm	233
12 light puoloi (LANIL)	⁴ He	³⁰ Si	⁹⁵ Mo	¹²⁹ I	¹⁵² Sm	²³⁴ U
	⁶ Li	⁵⁰ Cr	⁹⁶ Mo	¹³¹ Xe	¹⁵³ Eu	²³⁵ U
 78 structural materials (BNL) 	⁷ Li	⁵² Cr	⁹⁷ Mo	¹³² Xe	¹⁵⁵ Eu	236 U
 20 major and minor actinides 	⁹ Be	⁵³ Cr	⁹⁸ Mo	¹³⁴ Xe	¹⁵⁵ Gd	238 U
(LANL + BNL)	$^{10}\mathbf{B}$	⁵⁵ Mn	100 Mo	¹³³ Cs	156 Gd	²³⁷ Np
• 135 filos	$^{11}\mathbf{B}$	⁵⁴ Fe	⁹⁹ Tc	¹³⁵ Cs	¹⁵⁷ Gd	²³⁸ Pu
• 155 mes	$^{12}\mathbf{C}$	⁵⁶ Fe	¹⁰¹ Ru	¹³⁹ La	¹⁵⁸ Gd	²³⁹ Pu
 110 cross section covariances, 	¹⁵ N	⁵⁷ Fe	¹⁰² Ru	¹⁴¹ Ce	160 Gd	²⁴⁰ Pu
20 pubara	¹⁶ O	⁵⁸ Ni	¹⁰³ Ru	¹⁴¹ Pr	¹⁶⁶ Er	²⁴¹ Pu
-20 Hubars,	¹⁹ F	⁶⁰ Ni	¹⁰⁴ Ru	¹⁴³ Nd	167 Er	²⁴² Pu
– 3 PFNS,	23 Na	⁹⁰ Zr	106 Ru	¹⁴⁵ Nd	168 Er	241 Am
	^{24}Mg	91 Zr	¹⁰³ Rh	¹⁴⁶ Nd	170 Er	$^{242m}\mathbf{Am}$
	^{25}Mg	⁹² Zr	¹⁰⁵ Pd	¹⁴⁸ Nd	²⁰⁴ Pb	243 Am
Synergy with the NE funded AFCI	²⁶ Mg	93 Zr	106 Pd	¹⁴ / Pm	²⁰⁶ Pb	242 Cm
project - multi-group covariance	²⁷ Al	⁹⁴ Zr	107 Pd		²⁰⁷ Pb	243 Cm
ibrary COMMARA-2 serving as a		⁹⁵⁷ Zr	¹⁰⁸ Pd		²⁰⁸ Pb	²⁴⁴ Cm ²⁴⁵ C
eference		⁹⁵ Zr			209 B I	²⁴⁵ Cm
elelence		^{>5} Nb				²⁺⁰ Cm
					_ BRO	OKHAVEN
M. Herman 3	1	ANS&1	Exchange	Meeting	NATION	AL LABORATOR
6		rasiniylü	i DC, Augus	L ZZ-ZJ, ZUI	1 di	

FY2010 milestones (BNL)

Q1: Develop improved covariance module in the nuclear reaction code EMPIRE

Q2: Develop initial version of Quality Assurance procedures for covariance data

- Q3: Produce covariance evaluations for several priority materials (Fe, Cr, Ni)
- **Q4**: Produce covariance estimates for lower priority materials

4

FY2011 milestones (BNL)

- **Q1**: Complete covariance evaluations for about 25 structural materials
- Q2: Complete covariance evaluations for about 40 fission products
- Q3: Update Quality Assurance procedures based on the accumulated experience; assemble files; perform basic testing; submit to ENDF/B-VII.1 beta1
- Q4: Update covariance files as necessary, perform quality assurance, submit to ENDF/B-VII.1 beta2 for another round of CSEWG testing

FY2013 milestones (BNL)

Q1: Release of about 100 covariance files as part of the ENDF/B-VII.1 library

Q2: Produce report describing the work done under this project

M. Herman

Methodology Thermal and resonance region

Input Outputs

- Source of data
 - Experiments
 - ENDF file (retroactive method)
 - Atlas of Neutron Resonances (ANR)
- SAMMY analysis
 - full analysis (MF32, Exp. data)
 - retroactive (MF32, ENDF file)
- "Kernel Approximation" (MF33, ANR)
- EMPIRE Resonance Module (MF32, ANR, scattering radius and thermal point uncertainties reproduced through correlations
 - MF32 with systematic uncertainties in MF33
 - 'low-fidelity' (Mark Williams)

М.	Herman

Input \ Execute \						
Evaluation						
🔲 All codes	Analysis					
_ PTANAL	Cumulative plot ENDF					
U WRIURR	Porter-Thomas analysis					
□ RECENT/ SIGMA						
	Comparison					
Run codes	ENDF/B-VII JENDL-3.3 JEFF-3.1					
	Total Scattering Capture					
Uncertainty calc						
No. of resonances to be varied: 10 _ All codes Run codes						
No. of additional resonances held fixed: 99999						
No. of resonances to write out: 3 🛛 KALMAN Parameter unc.						
Reaction to be considered in KALMAN: $ \diamondsuit $ None $ \diamondsuit $ 1 $ \diamondsuit $ 2 $ \diamondsuit $ 18 $ \diamondsuit $ 102 $ \bigstar $ All						
Correlations of GnG	in: 0.0 GgGg: 0.0 No. of res.: 99999 Save cov.					

Resonance module of EMPIRE

ANS&T Exchange Meeting

Washington DC, August 22-23, 2011

Help

Methodology Fast neutron range (MF33)

- R-matrix analysis (LANL, light nuclei)
- EMPIRE/KALMAN considering experimental data (BNL)
- GNASH/KALMAN considering experimental data (LANL)
- •Least Square fitting of experimental data (LANL, SOK code)
- Dispersion analysis differences among evaluations (BNL)
- Reconsider previous work ENDF/B-VI.8, Low-Fidelity (BNL)
- Visual analysis of experimental data
- Assimilation (BNL)

M. Herman

8

Methodology: EMPIRE code Complete system for nuclear data evaluation

- A few mouse clicks
 - calculate cross sections, spectra, angular distributions, energy-angle correlated distributions
 - read and format neutron resonances
 - plot comparison with experimental data
 - format ENDF-6 file
 - run checking codes

M. Herman

- run processing code (NJOY)
- Covariances need more clicks

Nuclear Reaction Model Code

The Battle of Lodi (May 10, 1796)

EMPIRE contains:

- state of the art modeling
- RIPL-3 database of input parameters
- Atlas of neutron resonances
- Kalman filter

Friday, August 19, 2011

50,52,53**Cr &** ⁶⁰**Ni** Merging ORNL RR evaluation with COMMARA

- COMMARA covariance data adopted in the fast region.
- Additional section added to ORNL elastic to account for the uncertainty in the scattering radius R'
- For ^{50,52}Cr and ⁵⁸Ni additional MF33 sections added to capture to match COMMARA uncertainties.

M. Herman

10

58**Ni** Extension of the ORNL evaluation

Friday, August 19, 2011

$^{56}Fe(n,g)$ Role of correlations among gamma widths

²³⁷Np(n,f) Revised 'low-fidelity' in RR; EMPIRE/KALMAN in fast n

nu-bar covariances (dispersion analysis)

Fission cross section covariances

Friday, August 19, 2011

Quality Assurance

- Web-based Sigma-QA allows visual and quantitative inspection of:
 - Differential uncertainties (dynamic)
 - Integral uncertainties (static)
- UnCor applied to full library, performs 8 tests, warnings for possible problems including:
 - small uncertainties: (n,tot)<1%, (n,el) and (n, γ)<2%, etc.
 - non-positive-definite matrices
 - PFNS covariance not summing to zero

M. Herman

14

Web based QA system Differential uncertainties 53-Cr(n,el)

NND

Summary of total expenditures (LANL)

ID #	Item/Activity	Baseline Total Cost (AY\$)	Costed & Committed (AY\$)	Estimate To Complete (AY\$)	Estimated Total Cost (AY\$)
1	Prompt Fission Neutron Spectrum (PFNS) Covariance Evaluations	188K	140K	48K	188K
1.1	Method and code developments	50K	50K	0	50K
1.2	PFNS covariance evaluations for a suite of actinides	138K	90K	48K	138K
2	R-matrix covariance evaluations for light nuclei	208K	110K	98K	208K
2.1	O-16 Evaluation	30K	30K	0	30K
2.2	He-4 Evaluation	50K	50K	0	50K
2.3	Others (TBD)	128K	30K	98K	128K
3	Covariance evaluations for actinides	458K	180K	278K	458K
3.1	Pu-238, Pu-240, Pu-241 fission	50K	50K	0	50K
3.2	Am isotopes	50K	50K	0	50K
3.3	Others (TBD)	358K	80K	278K	358K
4	Quality Assurance tests of evaluated covariance evaluations + NJOY improvements	146K	50K	96K	146K
4.1	Identify suite of critical assemblies	20K	15K	5K	20K
4.2	Propagate uncertainties in transport simulations	76K	10K	66K	76K
4.3	NJOY improvements	50K	25K	20K	50K
Totals:		1,000K	480K	520K	1,000K

Friday, August 19, 2011

Summary of total expenditures (BNL)

WBS or ID #	Item/Activity	Baseline Total Cost	Costed & Committed	Estimate To Complete	Estimated Total Cost
		(AY\$)	(AY\$)	(AY\$)	(AY\$)
1	Development of improved covariance module in EMPIRE	160K	160K	0	160K
2	Development of covariance quality assurance procedures	130K	140K	20K	160K
3	Production of covariances for priority materials	420K	410K	10K	420K
4	Production of covariances for materials of lower priority	390K	40K	350K	390K
5	QA of covariances	170K	20K	150K	170K
6	Assembly and release of ENDF/B-VII.1 library	100K	60K	40K	100K
Totals:		1,400K	830K	570K	1,400K
					BBUUKH

M. Herman

ANS&T Exchange Meeting Washington DC, August 22-23, 2011

NATIONAL LABORA

Summary of expenditures by FY (BNL)

BNL	FY 2010	FY 2011	FY 2012
a) Funds allocated	\$450K	\$574K	\$350K
b) Costs accrued	\$476K	\$468K	0
c) Uncosted commitments	0	0	0
d) Uncommitted funds (d=a-b-c)	-\$26K	\$106K	\$350K

LANL	FY 2010	FY 2011	FY 2012	
a) Funds allocated				
b) Costs accrued	\$290K	\$190K		
c) Uncosted commitments	0	0	0	
d) Uncommitted funds (d=a-b-c)				
M. Herman 2	1 Was	ANS&T Exchange Meeti hington DC, August 22-2	ng NATIONAL LABO	NATORY

Training of new staff

- Newly trained evaluators:
 - Marco Pigni (currently at ORNL)
 - Caleb Mattoon (currently at LLNL)
 - Samuel Hoblit (BNL)
- New evaluators being trained:
 - Gustavo Nobre (postdoc, BNL)
 - Annalia Palumbo (postdoc, BNL)

22

Summary

- Covariance methodology advanced
 - kernel approximation
 - role of correlations
 - resonance module in EMPIRE
 - coupling of Kalman filter to GANSH and EMPIRE
 - marginalization technique (systematic uncertainties and model defects)
 - covariances for PFNS
- QA procedures established and made available
- Covariance evaluations prepared for 110 materials
 - ENDF/B-VII.1β3 released May 24 covariances for 186 materials (including 110 ANS&T supported)

Summary

- Covariance evaluations prepared for 110 materials
 - ENDF/B-VII.1β3 released May 24 covariances for 186 materials (including 110 ANS&T supported)
 - QA currently being performed
 - ENDF/B-VII.1β4 to be released in September
 - ENDF/B-VII.1 to be released in December after QA
- Two extensive papers (BNL & LANL) being prepared for Nuclear Data Sheets (to be published in Dec. 2011)

Project is proceeding according to the schedule

Are we done yet?

Great Milestone: COMMARA-2.0

- First science-based covariance library for application
- UQ Evaluations in ENDF/B-VII.1... First Generation

How do we go beyond?

- Develop better Data Assimilation tools
- Develop better Experimental Covariance Matrices
- Move toward more physical and predictive models (with really physical model parameters)
- Include cross-correlations among isotopes, reactions, experiments
- Propagate all uncertainties in complicated transport simulations

UNCLASSIFIED

Slide 12

Operated by Los Alamos National Security, LLC for NNSA

ANS&T Exchange Meeting, August 22-23, 2011

