Office of Nuclear Physics
Program Update

DOE/NSF Nuclear Science Advisory Committee Meeting
July 30, 2010

Timothy J. Hallman
Associate Director for Nuclear Physics
Office of Science, U.S. Department of Energy
Outline

- Program News
- FY2011 Congressional Markup
- Future Challenges
- Office of Nuclear Physics News
Doubly magic shell game (Sn 132)

Discovery of element 117
Conclusive evidence at TJNAF for the onset of Color Transparency

Color Transparency refers to the vanishing of the strong hadron-nucleus interactions for sufficiently fast hadrons. The energy scale where the nuclear medium becomes more transparent due to this phenomenon has now been conclusively determined.

- CLAS E02-110 directly produced ρ-mesons from highly-energetic photons, and observed the nuclear medium to become more transparent at higher space-time resolution (Q^2) of the photon. (to be submitted)

- The energy scale found is consistent and confirms the findings of a companion Hall C E01-107 experiment, that produced π-mesons rather than ρ-mesons.

Evidence for Saturated Gluon Densities in QCD Matter at RHIC

- A unique predicted property of cold QCD matter is the saturation of gluon densities at very low Bjorken x, from balance between gluon splitting and recombination.

- Suitably low x may be accessed in forward hadron production in d+Au collisions at RHIC.

- New results for forward ππ correlations show clear suppression (vis-à-vis pp) of away-side jet peak in central dAu, where inter’n with coherent gluon field in nucleus should ⇒ “mono-jets”.

- Results consist-ent with Color Glass Condensate (beforehand) predictions

- Nuclear gluon densities could be quantitatively characterized @ EIC.
15C(d,p)16C in inverse kinematics with HELIOS

A. Wuosmaa et al., Western Michigan, Manchester, ANL collaboration

15C beam produced with in-flight method

(2 x 10^6 s^-1)

Are the motions of the protons and neutrons decoupled in 16C?

Curves are DWBA calculations with various optical-model potentials.

Extraction of spectroscopic factors, wave functions and \(\gamma(sd)^2 \) matrix elements achieved.

A. Wuosmaa et al., PRL submitted
Shell Structure near 132Sn: preparing for CARIBU

- Shell structure near N=82
- Next up with CARIBU: 134Te and 132Sn
- Also impact of octupole correlations in heavier Xe (A>140) nuclei
Office of Science Programs
FY 2011 Congressional Request

FY 2011 Funding ($K)
Total = $5,121,437

- ASCR, $426,000
- BES, $1,835,000
- BER, $626,900
- FES, $380,000
- HEP, $829,000
- NP, $562,000
- WDTS, $35,600
- SLI, $126,000
- S&S, $86,500
- SCPD, $214,437
Nuclear Physics

FY 2011 Congressional Request

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Energy Nuclear Physics</td>
<td>116,873</td>
<td>+15,390</td>
<td>127,590</td>
<td>129,610</td>
<td>+2,020 (+1.6%)</td>
</tr>
<tr>
<td>Heavy Ion Nuclear Physics</td>
<td>194,957</td>
<td>+12,669</td>
<td>212,000</td>
<td>218,435</td>
<td>+6,435 (+3.0%)</td>
</tr>
<tr>
<td>Low Energy Nuclear Physics</td>
<td>94,880</td>
<td>+29,667</td>
<td>114,636</td>
<td>113,466</td>
<td>-1,170 (-1.0%)</td>
</tr>
<tr>
<td>Nuclear Theory</td>
<td>37,776</td>
<td>+17,237</td>
<td>41,574</td>
<td>44,709</td>
<td>+3,135 (+7.5%)</td>
</tr>
<tr>
<td>Isotope Program</td>
<td>24,760</td>
<td>+14,837</td>
<td>19,200</td>
<td>19,780</td>
<td>+580 (+3.0%)</td>
</tr>
<tr>
<td>Subtotal, Nuclear Physics</td>
<td>469,246</td>
<td>+89,800</td>
<td>515,000</td>
<td>526,000</td>
<td>+11,000 (+2.1%)</td>
</tr>
<tr>
<td>Construction</td>
<td>31,061</td>
<td>+65,000</td>
<td>20,000</td>
<td>36,000</td>
<td>+16,000 (+80.0%)</td>
</tr>
<tr>
<td>Total, Nuclear Physics *</td>
<td>500,307</td>
<td>+154,800</td>
<td>535,000</td>
<td>562,000</td>
<td>+27,000 (+5.0%)</td>
</tr>
</tbody>
</table>

* SBIR/STTR for FY 2009 was $11,773k. Comparable NP total w/SBIR/STTR in FY 2009 is $512,080k.

SC:

House Mark: $4,900 million ($221 million below President’s Request)

Senate Mark: $5,012 million ($109 million below President’s Request)
NUCLEAR PHYSICS

The Committee recommends $554,000,000 for Nuclear Physics. A recent National Academy of Sciences report, Advancing Nuclear Medicine through Innovation, recommended increasing the Federal commitment to nuclear medicine research. Nuclear medicine could substantially accelerate, simplify, and reduce the cost of delivering and improving healthcare. However, the Committee is concerned that the Department is not using funds to directly support nuclear medicine research with human application. To this end, within the funds provided, $15,400,000 is for nuclear medicine research with human application. All of the added funds must be awarded competitively in one or more solicitations that include all sources—universities, the private sector, and Government laboratories—on an equal basis. Funding for nuclear medicine application research was previously within the Biological and Environmental Research program.
FY 2011 Congressional Request Highlights

TOTAL INCREASE FOR NUCLEAR PHYSICS

$27,000

- **12 GeV Upgrade** – per planned construction profile + 16,000
- **Research** at national laboratories and universities essentially maintains constant effort across the program; slow build-up of user community for new experimental Hall D at CEBAF; supports data collection at RHIC with STAR and PHENIX, and research at LHC; addresses critical staff shortages at low energy facilities; and provides an increase for topical theory collaborations and for the National Nuclear Data Center. + 9,302
- **Majorana Demonstrator R&D ramps up** – effort to demonstrate proof-of-principle for neutrino-less double beta decay, initiated in FY 2010; according to project profile + 1,700
- **Scientific user facilities** - operate near optimal levels + 7,186
 - RHIC - 3,720 hours (91% of optimal)
 - CEBAF - 4,090 hours (100% of maximum level with 12 GeV schedule)
 - HRIBF - 5,200 hours – commissioning new accelerator components (85% of optimal)
 - ATLAS - 5,900 hours – commissioning new accelerator components (89% of optimal)
- **FRIB** – engineering and design initiated per Cooperative Agreement with MSU (decrease is a result of FY 2010 Congressional plus-up) - 2,000
- **FY 2010 MIEs ramp-up:**
 - **STAR HFT** – needed for RHIC high luminosity run in FY 2013 + 1,500
 - **RIB Science Initiatives** – forefront science opportunities around the world + 800
- **All other MIE funding** - decreases as several projects complete or ramp-down - 8,413
- **Other** - maintains effort in other parts of the program, including an increase for cost of living for isotope production facilities + 925
Implementing the recommendations of the Long Range Plan

With the completion of the 12 GeV CEBAF Upgrade, researchers will address:

- The search for exotic mesons—a quark and an anti-quark held together by gluons, but unlike conventional mesons, the gluons are excited
- Physics beyond the Standard Model via high precision studies of parity violation
- The spin and flavor dependence of valence parton distributions—the heart of the proton, where its quantum numbers are determined
- The structure of atomic nuclei, exploring how the valence quark structure is modified in a dense nuclear medium
- Nuclear tomography to discover and explore the three-dimensional structure of the nucleon
Hall D Tagger Area July 2010
Implementing the recommendations of the Long Range Plan: FRIB

Lehman review of readiness for CD1
July 27-29, 2010

- Physically compact layout
- Minimize higher-cost subterranean structures
- Single tunnel for all linac segments
Recommendation:
Project is ready to request CD1 from the Acquisition Executive
Utility Relocation (MSU Contribution)
Implementing the recommendations of the Long Range Plan

Luminosity and detector upgrades are underway for RHIC

PHENIX Barrel and Forward Vertex Detector

STAR Heavy Flavor Tracker

Investments in neutrons, neutrinos, and fundamental symmetries

CUORE receives CD2/3

Majorana Demonstrator Underway

R&D for nEDM
Production and Developmental Research of Alpha-Emitting Isotopes

The Isotope Development and Production for Research and Applications (IDPRA) Program is committed to providing alpha-emitting radionuclides to the research community in adequate supply to support important applications development. The program currently possesses an Inventory of Th-229 recovered from legacy materials at Oak Ridge National Laboratory from which up to 550 mCi per year of the important daughter-nuclide Ac-225 can be recovered and distributed. The Office of Nuclear Physics also supports research and development into the safe, secure, and reliable production of a variety of alpha-emitting radioisotopes designated as high-priority by the Nuclear Science Advisory Committee on Isotopes.
<table>
<thead>
<tr>
<th>Project Title</th>
<th>Institution</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of Thorium-229 in a Proton Accelerator</td>
<td>Oak Ridge National Laboratory</td>
<td>Investigate production of Thorium-229 (parent of Ac-225 and Bi-213) using low energy proton reactions on Th-230 and Th-232 targets</td>
</tr>
<tr>
<td>Production of Actinium-225</td>
<td>Los Alamos National Laboratory</td>
<td>Investigate the direct production of Ac-225 on Th-232 targets using 100 MeV, 200 MeV and 800 MeV protons</td>
</tr>
<tr>
<td>Production of Actinium-225 via High Energy Proton Induced Spallation of Th-232</td>
<td>NorthStar Medical Radioisotopes LLC, Argonne National Laboratory</td>
<td>Investigate direct production of Ac-225 using high energy (400 Mev and 8 GeV) proton spallation reactions on Th-232 targets</td>
</tr>
<tr>
<td>Production of Astatine-211 for U.S. Investigators</td>
<td>University of Washington</td>
<td>Optimize the production and recovery of At-211 using low energy alpha-particle irradiation of natural bismuth targets with dry distillation recovery of the gaseous product</td>
</tr>
<tr>
<td>Ionic Liquids as Solvents for Improved Production of Radioisotopes</td>
<td>Oak Ridge National Laboratory</td>
<td>Develop and test novel ionic-liquid solvents for separation of alpha-emitting radionuclides for isotope production applications and for alpha-emitting radionuclide generator systems</td>
</tr>
<tr>
<td>Production of Radium-223 and Thorium-227 from Legacy Actinium-227 at PNNL</td>
<td>Pacific Northwest National Laboratory</td>
<td>Investigate the recovery of Ac-227 from DOE legacy materials and develop novel generator concepts to recover Ra-223 and Th-227 for medical applications</td>
</tr>
<tr>
<td>Radioisotope Production at UC Davis</td>
<td>University of California</td>
<td>Optimize production of a variety of high priority radioisotopes, one of which is At-211 produced by low energy alpha particle irradiation of bismuth targets</td>
</tr>
</tbody>
</table>
NSAC Committee of Visitors January 6-10, 2010

- Responses discussed in NP
- Draft provided to Deputy for Science Programs for comment
- Expect formal submission to SC in about a week

- Implementation has been in progress: SBIR/STTR awardees information exchange meeting, Sept 13-14, 2010 Gaithersburg, Hilton

Early Career Research Award Solicitation is out

- Pre-Application deadline: August 13, 2010
- Full proposal due by November 9, 2010
Outlook

At Present:

- Nuclear science continues to deliver discovery science and forefront advances in technology
- New opportunities for ground breaking research are being addressed
- Support for training and advancement of the next generation of scientists is increasing
- National needs for production and R&D on rare isotopes for research, medicine and national security are being addressed
- New advanced research tools that will provide new capability and maintain US leadership are being constructed

In the out-years:

- The United States continues to faces a number of challenges
- Actions which address national priorities directly affect the Office of Science and NP
- It is essential to continue to articulate the relevance and value of nuclear science research to national priorities
- As in the past, to insure continued vitality and balance in the field, NP will work closely with the community together to prioritize the most compelling research and technical developments