US Department of Energy - OHEP Accelerator Task Force # Interim Report to NSAC meeting, Norbert Holtkamp, SLAC March 9, 2012 ## The *Accelerators for America's Future*Workshop in 2009 #### A MESSAGE FROM THE CHAIRS In October 2009, the Department of Energy's Office of High Energy Physics sponsored a symposium and workshop," Accelerators for America's Future." Its purpose was to elicit the views and opinions of a wide range of accelerator users on the challenges and opportunities for developing and deploying accelerators to meet national needs. ••••• W. Henning. C. Shank ### Why are we here? Senate mark-up "The Committee understands that powerful new accelerator technologies created for basic science and developed by industry will produce particle accelerators with the potential to address key economic and societal issues confronting our Nation. However, the Committee is concerned with the divide that exists in translating breakthroughs in accelerator science and technology into applications that benefit the marketplace and American competitiveness." "The Committee directs the Department to submit a 10-year strategic plan by June 1, 2012 for accelerator technology research and development to advance accelerator applications in energy and the environment, medicine, industry, national security, and discovery science. The strategic plan should be based on the results of the Department's 2010 workshop study, Accelerators for America's Future, that identified the opportunities and research challenges for next-generation accelerators and how to improve coordination between basic and applied accelerator research. The strategic plan should also identify the potential need for demonstration and development facilities to help bridge the gap between development and deployment." March 9, 2012 #### Who are we – why us? Sandra Biedron Colorado State University Lester Boeh Varian Medical Systems James Clayton Varian Medical Systems Stephen Gourlay LBNL Robert Hamm R&M Tech. Enterprises, Inc. Stuart Henderson FNAL Georg Hoffstaetter Cornell Norbert Holtkamp SLAC Lia Merminga TRIUMF Stephen Milton Colorado State University Satoshi Ozaki BNL Fulvia Pilat JLab Marion White ANL George Zdasiuk Varian Medical Systems Michael Zisman DOE-HEP ## Charge from Jim Siegrist, AD US DOE Office of High Energy Physics 1. Summary of costs and time scales for previous successful accelerator R&D efforts to help us assess future funding profiles; 2. Identification of those research opportunities that might have a strong potential for broad national benefits with relevance to the areas of energy and the environment, medicine, industry, national security and discovery science, along with the reasons why you believe they do; 3. A summary, including an estimate (based on your knowledge and expertise) of the current scope of work, resources invested, and status of the key research and technology areas identified, and; 4. Identification of possible impediments (both technical and otherwise) to achieving successful demonstration; in particular, note as appropriate the underlying fundamental science challenges that need to be addressed, and how these relate to use-inspired and applied R&D. March 9, 2012 Overview: US DOE Accelerator R&D Task Force #### What did we do? How did we do it? https://slacportal.slac.stanford.edu/sites/ad_public/committees/Acc_RandD_TF_Blog/def ault.aspx Community – Blog Industry NSF, NIH, NCI, Defense, ONR DOE-OS BES-NP-FES-ASCR OHEP Steward for long lead R & D Reaching out: "How can we help you?" - Looking back: there have been three panels on accelerator R&D with very good recommendations - Recently: output from *Accelerators for America's Future* Workshop - Discussed initial draft with ADs in Office of Science on Feb 13th. ## Results from *Accelerators for America's Future* Workshop Areas of R&D identified by each working group. All areas are of importance to each working group. Color coding indicates areas with greatest impact. #### The Grand Challenges - 1. Extend the energy reach of collider technology to probe fundamental phenomena at the multi-TeV scale \rightarrow High Energy - 2. Extend the beam power and intensity reach of hadron accelerator technology to enable next-generation capabilities in fundamental physical sciences and applications in energy → Beam power - 3. Extend the capability and understanding of performance limits of RF accelerating structures and technology → High Gradient - 4. Break the "RF Barrier" by developing scalable next-generation acceleration methods in the 10 GeV/meter range \rightarrow New Acceleration Methods - 5. Develop tools and technologies for the manipulation of particle beam phase-space and the exploration of limitations to beam emittance → Beam Emittance - 6. Develop concepts and technologies to extend the brightness, brilliance and coherence of photon sources to meet the challenges of 21st century materials science → *Brightness & Coherence* - 7. Develop accelerator systems to serve as compact sources of photons, neutrons, protons and ions → Compact Accelerators Overview: US DOE Accelerator R&D Task Force **&**larch 9, 2012 ### Hit the road running... #### Science Goal "Push" High Energy Beam Power Beam Emittance High Gradient New Methods Brightness & Coherence Compact Accelerators The Seven Grand Challenges of Accelerator Physics # Connecting the dots: From Science to Application | Science Goal "Push" | | | | | | | | Application "Pull" | | | | | | |---------------------|------------|----------------|---------------|-------------|---------------------------|-------------------------|----------------------------------|--------------------|---|----------|---------------------------|-------------------|----------------------| | High Energy | Beam Power | Beam Emittance | High Gradient | New Methods | Brightness
& Coherence | Compact
Accelerators | DOE R&D
Program Thrust | vitaribul | , and the same of | Medicine | Energy and
Environment | National Security | Discovery
Science | | | | | | | | | Superconducting RF | | | | • | | | | | | • | | • | | | Accelerator, Beam, Computation | | | | • | | | | | | | | | | | Particle Sources | | | | • | • | | | • | | | | | | | RF Sources | | | | • | | | | | | | | | | | Beam Inst, & Controls | | | | | | | | | | | | | | | NC High-gradient Acc. Structures | | | | ı | | | | | | | | | | | New Accelerator | | | | | | | | | | 0 | | | | | Superconducting Magnets | | | • | | | | ### Previously successful R&D 學用用用用用用用 ### Accelerators in the market place Courtesy: R. Hamm | Accelerator business segment | US Vendors | Annual
Revenue* | No. of US
Employees* | Foreign owned vendors in US | |------------------------------|--|--------------------|-------------------------|--| | | | | | | | Electron cancer therapy | Varian Medical Corporation | \$2,340M | 5200 | | | Radioisotope production | GE Medical (Sweden) | \$120M | 100 | Siemens Healthcare, AccSys
Technology, Inc. | | lon implantation | Applied Materials Corp. | \$1,200M | 1500 | | | Neutron generators | Thermo Scientific, Adelphi
Technology, Inc. | \$25M | 150 | | | MRI systems | Fonar Corporation, GE
Healthcare⊡ | \$1,500M | 2000 | | | Medical imaging detectors | Ortec, Amptek, Canberra | n/a | n/a | | | Ion Beam Analysis | National Electrostatic Corporation | \$20M | 100 | | | Electron beam NDE | Varian Security & Inspection Products, L&W Research Corp., HESCO | \$110M | 150 | | | * Estimates from author | | \$5.315B | 9200 | | ### Historically, this is how the labs have viewed industry... March 9, 2012 Overview: US DOE Accelerator R&D Task Force Courtesy: Eric Isaacs #### ...and this is how industry has viewed us. March 9, 2012 Overview: US DOE Accelerator R&D Task Force 14 #### What do we have so far: - I will go over a couple of major ideas that a more general and address questions of impediments to success and major programs to look for. - We have had teams working on: Discovery Science: G. Hoffstaetter, M. White Energy/Environment: S. Henderson, F.Pilat Medicine: L. Boeh, J. Clayton, S. Gourlay, G. Zdasiuk Defense: S. Biedron, S. Milton Industry: R. Hamm, L. Merminga, S. Ozaki, #### "The Round Table" The Office of High Energy Physics (OHEP), being the historical steward of long-term accelerator and accelerator-related research and development, could consider leading an accelerator and/or peripheral working group, an oversight panel, a steering group or a Board of Stakeholders. This would involve intra-agency and interagency program managers as well as industry representatives and technical advisors in the area of accelerators #### Communicate what is there and how to user FACILITY ORGANIZATION National laboratories, user facilities and other accelerator R&D facilities of the Office of Science Would all benefit from more direct and open communication. This would include the development of simple user-friendly procedures to give customers (for example, other agencies and industry) access to national laboratory infrastructure (computing centers, test facilities, test stations and technology infrastructure) and, equally importantly, to expertise (people and results). This could include the provision to perform proprietary research, or at least research in access-controlled areas. In many cases the use of this infrastructure could be modeled after wellestablished principles from BES user facilities and represented by the National User Facility Organization (http://n #### Concerns of our industrial partners The Office of Science/OHEP can work to identify, understand and resolve the concerns from industry and other agencies regarding protection of incoming and generated intellectual property or information. It would be useful to have, for this purpose and as a basis, a template applicable to all user facilities and infrastructures at Office of Science national laboratories. Such templates could cover all aspects of a contractual arrangement that is typically negotiated every time an arrangement is put in place. #### Leveraging where possible Leveraging the SBIR/STTR funding with a specific focus on energy and environment, medicine, industry and defense and security apart from discovery science could strengthen these parts of the program, providing an easy way to direct some money towards the topic areas identified in the Accelerators for America's Future workshop ### Collaborative Accelerator Research Teams CARTs The Office of Science OHEP's wealth of knowledge and vast infrastructure could be channeled to establish Collaborative Accelerator Research Teams (CARTs) focused on specific challenges detailed in the Accelerators for America's Future workshop. OHEP, with its stewardship program as well as the other directorates through its national laboratories, could direct its capabilities towards specific issues in the areas of energy and the environment, medicine, industry, defense and security and discovery science. The interdisciplinary Teams, drawing from national laboratories, other agencies, industry and universities, would have a clear mission, a finite duration and are competitively bid. ### A new Program within Advanced Accelerator R&D in OHEP The Office of Science could establish a program with the purpose of bringing industry, laboratories and universities together to foster the application of accelerator technology in energy and the environment, industry, medicine, defense and security and discovery science. #### Accelerator Education is a must! The particle accelerator workforce would significantly benefit from an extension and addition to what is currently available in education programs. Workforce development for particle accelerator R&D has traditionally been a major emphasis of the Office of Science, and in particular, the HEP and some of the NSF programs. Though close contacts between universities and national laboratories exist, the Office of Science could help involve more universities in accelerator education programs. It could also facilitate more integration with industry, giving it easier access to these programs. ### Infrastructure Proposal 1 Scripps Proton Therapy Center, San Diego; Courtesy: VARIAN Medical Systems confidential The medical community would benefit from a discussion of how the current R&D program could help on the route to a National Resources for Hadron Beam Medical Facilities. The Office of Science could develop a stepwise implementation plan for providing beams, developing beams and beam delivery systems for a cost-efficient production of such facility. #### Infrastructure Proposal 2 The Office of Science could consider providing a home for laser R&D under its auspices. Lasers, an enabling technology, have become an integral part of accelerators and provide tremendous potential for new methods of acceleration, for miniaturization of accelerators and as part of accelerator systems. #### Summary - Congress is waiting for an answer and I hope we are helpful - We need advise on feasibility, appropriateness and content - Implementing some of the ideas would mean to do business a bit different. - Of course we hope that our input will last a bit longer and go deeper than some of the other panels. But that needs all/most of OS on board #### Thank You