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…we ask the NuSAG to make recommendations on 
the specific experiments that should form part of the 
broad U.S. neutrino science program.

From the original charge to NuSAG:

• September 1, 2005: Recommendations to the 
Department of Energy and the National Science 
Foundation on a United States Program in 
Neutrino-less Double Beta Decay
• February 28, 2006: Recommendations to the 
Department of Energy and the National Science 
Foundation on a U.S. Program of Reactor- and 
Accelerator-based Neutrino Oscillation 
Experiments 



From NuSAG’s second charge letter:

“Assuming a megawatt class proton accelerator as a 
neutrino source, please answer the following questions 
for accelerator-detector configurations including those 
needed for a multi-phase off-axis program and a very-
long-baseline broad-band program.”

The questions:
• Scientific potential
• Associated detector options, including rough cost
• Optimal timeline, including international context
• What other scientific inputs are needed?
• What additional physics can be addressed?



Historical context (c.2005-6) and the BNL/FNAL 
Study Group

• T2K and NOvA use “off-axis” neutrinos to create narrow-
band beams, and both lay out potential programs including 
upgraded accelerator power, beams, and detectors.
• An alternate approach using a “wide-band beam” has 
been proposed by a Brookhaven group.

These are the approaches NuSAG is charged to evaluate.

Concurrently, BNL and FNAL convened a Study Group 
spanning both approaches – NuSAG’s major input.

General consensus: FNAL Main Injector would be the proton 
source for either approach in the U.S.
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The mixing matrix is:

Where:

Majorana CP phases are not accessible through 
oscillation experiments

Neutrino Oscillation Basics

δ and matter effects can lead to



The possible mass hierarchies

(O. Cremonesi – LP2005)

Oscillations are sensitive only to Δm2, not to the scale of mν



Fill out our understanding of 3-neutrino mixing and 
oscillations:

• What are the mixing angles?  Is θ13 large enough to 
search for CP violation?
• What are the orderings and splittings of the neutrino 
mass states?
• Is there CP violation in neutrino mixing?

A world-wide effort has laid out an ambitious program 
that can do all of this – subject to the values of the 
unknown parameters, a risk inherent to this 
experiment-driven field.

Goals of the next phases of the worldwide 
experimental program in neutrino oscillations 
beyond T2K, NOνA and reactors



“Phase 1”: currently approved or planned
Reactor experiments
• Double Chooz: 3σ sens sin22θ13 ~ 0.05 by 2012
• Daya Bay: 3σ sens sin22θ13 ~ 0.02 by 2013

Accelerator experiments (with currently planned beam power)
• T2K: 3σ sens P(νμ→νe) ~ 0.01 by 2014 (est.)
• NOvA: 3σ sens P(νμ→νe) ~ 0.005 by 2016 (est.)
• NOvA+T2K: some sensitivity to mass hierarchy at the 
highest currently allowed θ13’s

“Phase 2”: NuSAG’s current charge
• Next round of accelerator experiments to extend mass-
hierarchy and CP violation sensitivity to sin22θ13 ~ 0.01



How large is θ13 ?

(C. Albright and M-C Chen, Phys. Rev. D74 (2006) 113006)



To a good approximation, the probability P(νμ→νe) for the neutrino 
oscillation is given by:

Where α≡ Δ m2
21/Δ m2

31 is the small (∼ 1/35) ratio between the solar and 
atmospheric (Mass)2 splittings

Atmospheric

Solar

Interference:

CP violating

CP 
conserving

Kinematical oscillation phase
Matter effects: GF = Fermi coupling

Ne=electron density

And:



Bi-Probability Plot
Eν=2.3 GeV,  L=810 km  - NOνA Parameters

CP violation – vacuum oscillations



Bi-Probability Plot
Eν=2.3 GeV,  L=810 km  - NOνA Parameters

CP violation – vacuum oscillations



Bi-Probability Plot
Eν=2.3 GeV,  L=810 km  - NOνA Parameters

CP violation – vacuum oscillations



Bi-Probability Plot
Eν=2.3 GeV,  L=810 km  - NOνA Parameters

CP violation – matter oscillations



Bi-Probability Plot
Eν=2.3 GeV,  L=810 km  - NOνA Parameters

CP violation – matter oscillations

Get parameter degeneracies independent of 
measurement errors with mono-energetic beam model



Bi-Probability Plot
Eν=0.6 GeV,  L=295 km  

T2K Parameters
Eν=2.3 GeV,  L=810 km  

NOνA Parameters

For Δ m31
2<0 and δCP near π/2

Or  Δ m31
2>0 and δCP near 3π/2  - Solution may be unique



Breaking degeneracies
Reactor experiments measure  the survival probability of

• Depends only mixing parameter

• No depedence on δCP or mass hierarchy Solar term

Note for accelerator experiments:
Matter effects increase with larger energy

CP effects increase with smaller energy

Using information from 2nd appearance maximum can help



Approaches to Appearance Experiments
The signal:

π+

μ+

νμ νe e+

~1000 km

Acclerator beam produces mostly νμ with small contamination of νe

The signal is neutrino reactions producing electrons in a distant detector

There are two principal backgrounds:

1. π0 interactions from neutral current interactions of νμ where the 
two γ -rays are not distinguished from a single electron.

2. Intrinsic νe in the beam from the accelerator.  This background is 
irreducible.

Backgrounds are measured in near detector to reduce systematic error.



Backgrounds

π+ νμ π0
νμ

Background 1: Reject through electron detection mechanism

Water Cherenkov detectors (ala Super-Kamiokande) – select only 
quasi-elastic events, reconstruct neutrino energy and direction (within 
Fermi momentum uncertainty) from electron energy and direction.

Segmented liquid scintillator detectors (ala NOνA) – similar strategy, but 
scintillator permits detection of recoil nucleons and other sub-Cherenkov 
threshold particles. (No proponents)

Liquid argon time-projection chamber – excellent spatial resolution 
distinguishes π0 from electron. Allows use of most νe charged current 
channels giving ∼3 times higher detection efficiency per unit mass.

Will return to suppressing π0 production later.



Backgrounds

π0

K+ νe e+

recoil hadrons

Background 2: Irreducible background from beam νe 

K mesons (and muons) decay to ν
e

at accelerator source. 
This background limits to ∼ 0.005 for discovery 
and ∼ 0.01 for CP and mass hierarchy study.

This background does not occur for the β – beam and 
neutrino factory beam technologies that are under 
development, especially in Europe.



Experimental Approaches
T2K and NOνA use an “off-axis” beam to obtain a narrow band of Eν

(G. Feldman)

Off-Axis: Match maximum flux to appearance maximum

WBB: Cover multiple nodes – use different L/E of nodes

(B. Viren)



Experimental Approaches
The off-axis beam approach

• Is the experimental realization of the simple model of 
appearance experiments shown in bi-probability plots.

• Suppresses π0s by reducing high energy neutrino flux

• Uses upgraded NUMI beam

The wide-band beam approach

• Uses a spectrum of energies to lift degeneracies

• Maximize flux for long baselines

• Uses longer baselines to enhance the matter effect



U.S. experimental scenarios using these approaches

All start with Fermilab Main Injector
• Max achieved beam power: 315 kW @ 120 GeV
• Initial upgrade plan to 700 kW
• Longer-term upgrade plan to 1.2 MW
• Less beam power at lower energies

Off-axis
• ~100 kt of Liquid Argon TPC – on or near surface
• Use existing/upgraded NuMI beam
• Deploy all at NOvA site, or split with “2nd max”, or other

Wide-band beam, very long baseline
• ~300-500 kt of water Cherenkov (or ~100 kt LArTPC)
• In DUSEL
• New neutrino beam



(G.Feldman – NOνA)

Examples:
With P(νμ→νe) = 0.02:

• P(νμ→νe) > 0.025 
determines mass 
hierarchy, > 0.035 
establishes CP 
violation

or:
• Reactor measures 
sin22θ13 > 0.05: mass 
hierarchy determined

Some Contourology – Off-Axis



(G.Feldman – NOνA)

Examples:
With P(νμ→νe) = 0.02:

• P(νμ→νe) > 0.025 
determines mass 
hierarchy, > 0.035 
establishes CP 
violation

or:
• Reactor measures 
sin22θ13 > 0.05: mass 
hierarchy determined

Some Contourology – Off-Axis

But – unbroken degeneracy



A harder case:
With P(νμ→νe) = 0.01:

• P(νμ→νe) ~ 0.015 
leaves mass hierarchy 
and CP violation 
unknown
• Reactor unlikely to 
settle things in this 
region

Some Contourology – Off Axis



28 GeV protons, 5 yrs     at 1 MW, 5 yrs     at 2 MW, 300 kton detector

More contourology – Wide-band Beam

(V. Barger, et al.,PRD 74, 073004 (2006)

Discovery for

normal mass

Hierarchy

1300 km

Discovery 

for CP

Violation

1300 km

CP fraction = 0, 0.5, 1 CP fraction = 0, 0.5, 0.75



In band A: max CPV/normal ~ no CPV/inverted

normal inverted

cp=0 deg cp=0 deg

A AB B

In band B:                    node ≠ peak
Degeneracy broken



Summary for neutrino oscillation physics

Off-axis approach:

• Narrow band neutrino beam

• Suppression of high energy neutrinos reduces π0 background

• Irreducible background from high energy K meson decay

• May require second off-axis detector at 2nd appearance 
maximum for resolution of parameter degeneracies

Wide-band beam approach

• The π0 rejection looks OK at 60 GeV, waiting for 120 GeV

• Longer baseline gives larger matter effects



Other Physics
Nucleon decay

• Water Cherenkov detector 15 times Super-K fiducial volume 
excellent general purpose detector

• Liquid argon TPC – excellent for SUSY preferred decay     
p→ K+ντ due to good tracking

• Could become high priority if Super-K sees candidates

Low energy astrophysics

• Neutrino burst from galactic supernova 

• Diffuse supernova neutrino background

• Some solar neutrino physics

Other physics may increase costs (e.g. more PMT’s for Low E)



Detector technologies
Water Cherenkov
• Known, successful technology for ν osc and p decay
• Large – 300 kton fiducial volume
• Must be underground to avoid cosmic rays: DUSEL
• PMT’s drive cost and construction time
• R&D for new light sensors
• More PMTs needed for proton decay, 

LArTPC
• Ability to reconstruct events in detail → excellent π0

rejection and ~3×efficiency of Water-C
• Aggressive R&D needed to prove feasibility at 50-

100 kt scale with drastically reduced costs
• Can it work at surface? – proof needed
• p → K+ν, a possibly favored proton decay mode



Monolithic Water Cherenkov Detector

(C.-K. Jung)



Modular Water Cherenkov Detector

Build ten 100 kton detector 
modules – each looks like a 
scaled up Super-
Kamiokande, probably with 
fewer PMTs.

NuSAG presentation 
proposes starting with 
three modules.



Liquid Argon Detector
What is time scale for R&D, construction?

(B. Flemming)



Off-axis

Pro:
• Reduced π0 background
• Known ν energy: use all CC events?
• Use existing NUMI beam
• Near detector same technology as far detector
• Allows incremental program (but steps still $$!)

Con:
• Must deal with ambiguities of ~single energy
• 2nd-max site has very low event rates, HE ν’s from K’s
• Detector must be on surface to use NuMI beam –

cannot use Water-C
• LArTPC needs intensive R&D
• Near detector sees very different beam



Wide-band beam, very long baseline

Pro:
• Full energy spectrum for resolving ambiguities
• Proven technology
• DUSEL deployment gives broader physics program
• Recent progress in Water-C π0 rejection

Con:
• Large, ~all-at-once cost
• DUSEL timeline consistent with other constraints?
• With PMT’s the cost driver, cost sensitive to coverage 

needed for π0 rejection, other physics
• Near detector can’t be Water-Cherenkov



Current status and NuSAG plans

• NuSAG is educated on the issues, including current 
thinking in Asia and Europe

• Findings on technical issues mostly in place, strategy 
recommendations need sensitivity info

• BNL/FNAL Study Group working on directly-comparable 
sensitivity calculations for the different scenarios

• One strategic issue seems clear: can’t start construction 
on Phase 2 without an observation of non-zero θ13

• These define detector mass needed (cost) and may rule 
out some scenarios

• R&D needed: LArTPC, PMT’s, large caverns, high beam 
power

• NuSAG report will be available before next 
HEPAP/NSAC meetings
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