

HRIBF

- Produces high-quality post-accelerated beams of unstable nuclei
 - Radioactive ion beams (RIBs)
- A national user facility for RIB science
 - Developed at low cost out of an existing accelerator complex
 - Approx. 350 users
 - Research programs in two primary areas
 - Nuclear structure & reactions
 - Nuclear astrophysics
 - > Operates 5+ day 24 hour schedule
 - ~4000 total research hours per year
 - 1500 to 2000 hours RIB on target in present configuration
 - Up to 3000 hours RIB (5day ops) with new production target area
- Only facility of its type in the US
- Has capabilities that are unique worldwide
- Helping to develop ISOL RIB science
 - Pioneering techniques, developing technology
 - > Helping to develop, maintain a user base for next generation facility

HRIBF Schematic

Radioactive Beam Development

- The success of HRIBF as a radioactive beam facility depends on the development of physically interesting beams.
- In general development of each beam is a research project in itself.
- Each new beam can require development of a new target system.
- In some cases optimized ion sources must be developed for particular RIB species.

ISOL R&D

- Ion source system development and optimization
- Target material and format development
- Target thermal performance
- Beam purification and manipulation
 - Chemistry, IS, resonant laser, non-resonant laser, ion-guide...
 - Examples:
 - Sn, Ge purified via sulfide chemistry
 - Mass 132 from 2% Sn \rightarrow 96% Sn
 - Ni purified via laser photodetachment
 - Br, I purified via IS specificity
- RLIS development
- Target release studies

HRIBF Core Science Programs

- Astrophysics
 - Reactions relevant to explosive nucleosynthesis
 - Direct and indirect studies
 - Surrogate reaction studies
 - Level properties of n-rich systems
 - Solar physics
- Nuclear structure and reactions
 - Coulex, transfer, static moment measurements
 - Reactions in very neutron-rich systems
 - Relevance to superheavies?
 - Reactions with weakly bound probes
 - Decay spectroscopy
- Theory
 - Close and fertile collaboration in major experimental prorrams
- ISOL science and technology
- Applications
 - > NNSA Center of Excellence in Stockpile Stewardship (Rutgers U.)
 - > AMS

Nuclear Structure Endstation Recoil Mass Spectrometer

8

The HRIBF Recoil Mass Separator (RMS)

Daresbury Recoil Separator (DRS)

SIDAR

Ion Chamber

Windowless gas cell

Beam

HRIBF Nuclear Astrophysics Detector Systems Daresbury Recoil

(d,pγ) experimental setup w/ Clover Ge detectors

ORRUBA - Oak Ridge Rutgers Univ. Barrel Array

Separator for capture

OAK RIDGE NATIONAL LABORATORY

Nuclear Structure Studies at Large Neutron Excess

Measurements near ¹³²Sn

- Coulomb excitation
 - > B(E2) values \rightarrow transition matrix elements
 - Magnetic moments (transient field, recoil-in-vacuum)
 - > Static quadrupole moments by reorientation \rightarrow nuclear shape
- Transfer reactions

- ➢ e.g. (d,p), (3He,d)
- Fusion-evaporation; γγ spectroscopy
 - \rightarrow band structure, etc.

Measurements near N=50

A research program focused in studying the evolution of the nuclear structure as we approach N=50 has been established at HRIBF

1. B(E2) values have been measured using the same technique for both *RIB*s and *SIB*s along the Ge and Se isotopic chains.

Double Magic !!!

2. A *novel* method for measure masses of nuclei far from stability has been demonstrated with very low beam intensities

- 3. Quadrupole Moments for ⁷⁸Ge
- 4. B(E2) of ⁸⁴Se
- 5. *g*-factor for 80 Ge

measurements

Set-up for n-rich Coulex / transfer studies

Foil plus multichannel plate

CLARION

11 segmented clover Ge detectors

HyBall

95 CsI detectors with photodiodes

Coulex measurements near ¹³²Sn

nribf

N = 83 level energy systematics

<u>n</u>ribf

Relative transfer cross sections

¹³C(^AZ,¹²C)^{A+1}Z ⁹Be(^AZ,⁸Be $\rightarrow \alpha \alpha$)^{A+1}Z

Attenuated angular correlations: g-factor by RIV

Stone et al. PRL 2005 OAK RIDGE NATIONAL LABORATORY

Exotic nuclei via decay spectroscopy

- Probe spectroscopy at and beyond the proton drip line.
- Nuclear structure relevant to rp process
- Approach ¹⁰⁰Sn
- Use new experimenal tools and unique HRIBF beams to explore β-n

Example of the alpha decay chain pulse

ohr

Fusion like reactions in very n-rich systems

- Look at the influence of extreme isospin on formation and decay of composite system
- Evaporation residue measurements with ¹³²Sn, ¹³⁴Sn + Ni isotopes
- Fission studies in heavier systems

Evaporation Residues

Fission

560MeV ¹³²Sn+⁶⁴Ni coinc. data

Nuclear Astrophysics at HRIBF

- Fundamental Questions:
 - How do the stars evolve -- and die catastrophically ? What is the origin of the elements making up our bodies & our world?
- unique multi-disciplinary approach

HRIBF measurements with proton-rich & neutron-rich radioactive beams

nuclear data evaluations, processing, & disseminations

simulations of element synthesis in stellar explosions

 recent results with ¹⁸F, ⁸²Ge, ⁸⁴Se, ⁷Be unstable beams, as well as integrated data & theoretical work

Precision HRIBF Measurements with p-rich ^{17,18}F beams Helping diagnose nova explosions

First (d,p) study on an r-process nucleus: ⁸²Ge(d,p)⁸³Ge

- (d,p) reaction transfers a neutron from ²H target to beam particle
- can use to determine mass (Q-value), levels, single particle strengths, spins & parities (angular momentum transfer) ...

Using (d,p) reactions to study N=51 isotones

Impact: demonstrated viability of inverse-kinematics (d,p) measurements

Thermonuclear Burning in our Sun studied with Intense HRIBF Radioactive ⁷Be beams

Help determine flux of highenergy neutrinos from the sun

Explain anomalous cross section at low energies using transfer reaction to search for missing ⁶Be resonance

Theory effort

UT-BATTELLE OAK RIDGE NATIONAL LABORATORY

34

Nuclear Structure

- QRPA description of the low-energy multipole strength. Interpretation of collective excitations in neutron-rich nuclei (Coulex data from HRIBF)
- Theory of weakly-bound and unbound nuclear states. Deformed proton emitters (**Decay spectroscopy data from HRIBF**) and drip-line neutron-rich nuclei within the Continuum Shell Model
- Shell-Model and Mean-Field description of single-particle states in nearly-spherical nuclei (Transfer reactions data from HRIBF)
- Ab-initio (coupled cluster) theory of light nuclei; Shell-Model description of medium-mass nuclei; Density-Functional-Theory of complex nuclei, superdeformed nuclei

Nuclear Reactions

- Self-consistent description of heavy-ion reactions (Subbarrier fusion studies with neutron-rich beams at HRIBF)
- Gamow-shell-model description of direct reactions (Transfer studies at HRIBF)

Nuclear Astrophysics

- Examine the astrophysical impact of HRIBF measurements $({}^{25}Al(p,\gamma){}^{26}Si, {}^{17}F(p,\gamma){}^{18}Ne, {}^{18}F(p,\alpha){}^{15}O, {}^{14}O(\alpha,p){}^{17}F)$
- Conduct sensitivity studies to determine measurement needs (Nova, X-ray burst, r-process)
- Supernova Program

Quantum Many-Body Problem

• Interdisciplinary research on many-body systems on various scales

QRPA studies of quadrupole collectivity in the Sn isotopes

Continuum Shell Model studies of fine structure in proton emission

Monte-Carlo sensitivity studies for the ${}^{17}F(p,\gamma){}^{18}Ne$ reaction

