

- Long Range Plan
- Highlights
- Budget
- Announcements
 - Solicitations
 - Other funding opportunities
- Physics Division Personnel

NSAC LRP

- Provides critical advice for review process
 - Crucial questions
 - Landscape
- Excellent cooperation between DNP and NSAC
- Thoughtful and serious work
- Thank you
 - DNP as well as to the Town Meeting organizers and conveners
 - The NP community for the input to the LRP-WG

Highlights – new γ states in ¹⁹O

These states (shown with red boxes to the left and red arrows in n resonance curve below) are interspersed among broader n decaying states. The γ -decaying states have somewhat higher spins and more complex intruder configurations leading to very small overlap with $^{18}\mathrm{O} + n$.

FSU grad student
Rutger Dungan discovered
6 γ-decaying states unbound
to neutron decay
in ¹⁹O from the ⁹Be(¹⁴C,αn)
reaction

Highlights – ¹²C Hoyle State Investigations

He-burning red giant stars

Requires Hoyle state in ¹²C but its nature not understood.

The TwinSol separator at the Notre Dame NSL

TwinSol separator → ¹²B beam

12
B → implanted in prototype AT-TPC → 12 C + e⁻ + $\overline{\nu}_{e}$

12C → Triple-alpha decays, zero spin
 Hoyle State
 → further investigations

Highlights –

Transverse Wobbling: New Collective Motion

Deformed nuclei - usually axial

Chirality (fairly common) or Wobbling (rare) → TRIAXIAL

Transverse Wobbling observed in ¹³⁵Pr

J.T. Matta et al., Phys. Rev. Lett. 114, 082501 (2015)

350 400 450 500 550 600 650 700 750 800 850 $E_{_{\rm J}}\left(keV\right)$

Highlights – NSCL ReAccelerator Facility Operational

Highlights – High Precision Penning Trap Mass Measurements with LEBIT

Program Goal

 Measurements for nuclear structure, nuclear astrophysics, fundamental interactions and symmetry tests

Q-value Measurement of Superallowed β-decay of ¹⁴O via Penning Trap

- Contributes to tests of Conserved Vector Current (CVC) hypothesis
- One of 14 best-known decays, and the only one that had not been previously measured in a Penning trap
- Attempted multiple times at other facilities now successfully measured at LEBIT in 2015

Precision:

 $\delta m = 25 \text{ eV}$

 $\delta m/m = 2 \cdot 10^{-9}$

Highlights – Production of ²⁶Al in Novae

 25 Al(p, γ) 26 Si – dominant uncertainty in 26 Al production in Milky Way

- Measured γ branch for first time to determine strength of 3⁺ resonance
- Allowed the production rate of ²⁶Al in novae to be accurately determined for the first time
- Up to 30% of Galactic ²⁶Al produced i novae

Highlights – Selected Results from FROST Experiment @ JLab $\gamma p \rightarrow \pi^+ n$

- FROST \rightarrow 900 data points of **double-polarization observable E** in π + photoproduction (circularly polarized beam on longitudinally polarized protons) for W = 1240 2260 MeV.
- Significant improvements of the description of the data in SAID, Jülich, and BnGa partialwave analyses after fitting.
- New evidence found in this data for a $\Delta(2200)7/2$ resonance (BnGa analysis).

Highlights – E906/SeaQuest

- Invariant mass distribution of μ⁺μ⁻ pairs coming from the target shows mass resolution of ~180 MeV/c² better than expected!
- Data agree well with simulation
- Physics results on d_bar/u_bar ratio in the proton coming soon!

Liquid hydrogen and deuterium targets built and maintained by University of Michigan

Highlights – Parity Violating A_L in W-Production Observed in pol p-p @ RHIC Constrains $\Delta q(x)$ and $\Delta \overline{q}(x)$

PHENIX and STAR A_L for W-bosons

Highlights – New Muon g-2 @ FNAL

Superconducting coils transported from Brookhaven arriving at Fermilab

First azimuthal field map at 1.45 T September 2015

The storage-ring magnet installed in MC1

Michigan setup for ³He magnetometry development

Highlights – Final MiniBooNE v Interaction Results

Charged and neutral-current quasielastic interactions on C (Phys. Rev. D**91**,012004, 2015, arXiv:1309.7257) →

- Multinucleon effects important for v interactions in nuclei at GeV energies
- Data constrain interaction models for many neutrino oscillation experiments (NoVA, microBooNE, and DUNE)

 $\overline{\nu}/\nu$ NC quasielastic cross section ratio

 $\bar{\nu}$ NC/CC quasielastic cross section ratio

NSF MPS Funding Trends

MPS Subactivity Funding

(Dollars in Millions)

FY 2009 funding reflects both the FY 2009 omnibus appropriation and funding provided through the American Recovery and Reinvestment Act of 2009 (P.L. 111-5).

Budget Trends – NSF Nuclear Physics

FY	Hadrons & Light Nuclei	Structure & Heavy Ions	Fund. Sym.	Nucl. Astro.	Theory	Program Total	NSCL	JINA JINA -CEE	MRI	Mid- Scale	Total Nuclear Physics
	(k\$)	(k\$)	(k\$)	(k\$)	(k\$)	(k\$)	(k\$)	(k\$)	(K\$)	(K\$)	(k\$)
2009	7,663	4,734	5,572	N/A	5,825	23,794	22,500	2,000	8,058	9,524	65,877
2010	6,421	6,863	5,532	1,078	3,855	22,672	21,000	2,150	1,134		46,956
2011	5,349	6,485	5,336	1,994	3,719	22,883	21,500	2,150	729		47,262
2012	7,657	3,375	5,855	1,610	3,829	22,326	21,500	2,150	2,744		48,720
2013	5,218	4,259	5,304	1,754	3,474	20,008	21,500	2,150	2,996	490	47,144
2014	5,275	4,215	5,250	2,475	3,514	20,728	22,500	2,280	1,038	1,188	47,733
2015	5,941	3,722	6,818 includes 1,320 for 0νββ	2,245	4,183	22,908	23,000	2,280	1,801	1,367	51,357

MRI: competes each year; supplemental one-time acquisition/development funds Mid-scale: ad hoc competition; supplemental construction funds

FY15 PHY Allocation was \$275 M

- Approximately 2% for Operations
 - Panels, IPA Appointments and Travel, M&S
- Approximately 30% for M&O for Facilities
 - ATLAS and CMS, IceCube, LIGO, NSCL
- Approximately 8% for Physics Frontiers Centers
 - Currently Ten (one of which is JINA-CEE)
- Approximately 4% for Education and Broadening Participation
 - REU Sites, LIGO Education Center, QuarkNet, ...
- Remaining 56% (\$154 M) for Six Major Areas of Physics (AMO, PP, GP, NP, PA, PoLS)
 - Experimental and Theoretical

Solicitation for NSF Physics Division Investigator-Initiated Research Projects <u>15-579</u>

All proposals submitted to the Division of Physics programs must go through this solicitation.

Deadlines:

- October 28, 2015 for Particle Astrophysics
- November 13, 2015 for Experimental Nuclear Physics & Theoretical Nuclear Physics
- December 3, 2015 Computational Physics
- February 3, 2016 for Accelerator Science
- Follow Grant Proposal Guide (GPG)
 http://www.nsf.gov/pubs/policydocs/pappguide/nsf15001/gpg_index.jsp
- Follow the GPG checklist
- Follow instructions that are specific to this solicitation ...

Focused Research Hubs in Theoretical Physics (FRHTP) 16-501

One of the two focused research hub will support theoretical work in the area of **Fundamental Symmetries**, **Neutrinos**, **and their applications to Nuclear Astrophysics** relevant to research within the purview of the Division of Physics

Number of awards: 1 Duration: 5 years

Anticipated funding: \$250k-\$500k/year, pending availability of funds

The scientific goals of the hub should be achieved in the first five years of the project.

Provide support for:

- * Postdoctoral Researchers
- * Hub related activities

Does NOT provide additional support for:

- Senior Personnel
- * Graduate or Undergraduate Students

Deadline: January 22, 2016

Follow Grant Proposal Guide (GPG)

http://www.nsf.gov/pubs/policydocs/pappguide/nsf15001/gpg_index.jsp

Follow instructions that are specific to this solicitation ...

Contact Bogdan Mihaila for more information

Major Research Instrumentation (MRI) NSF 15-504

FY15

- Physics received 24 proposals, NP received 8 proposals, 3 funded
- Development of a Helium-Jet Ion-Guide System for Harvesting Rare Isotopes and Commensal Operation at NSCL, MSU, PI = R Zegers, \$1,200k
- Development of a Neutral Particle Spectrometer to Investigate Quark
 Structure of the Proton at JLab 12 Gev, Consortium, PI = T Horn, \$526k
- Gamma Spectroscopy System for Research and Research Training in Nuclear Physics, Wittenberg Univ, PI = P Voytas, \$75k

FY16

- Due date = 13-jan-2016
- Your university probably has an earlier internal deadline

Career Awards

- Solicitation: 15-555
- Must include excellent research proposal as well as excellent educational plan
- There are eligibility requirements: e.g., must be assistant professor, untenured
- 5 year wards, \$400,000 minimum
- Proposal deadline: July 23, 2015
- PECASE nominees are chosen from CAREER winners
- Contact program officer for information/advice ahead of time (budget, scope)

NSF/MPS/Physics Personnel

- France Cordova Director
- Fleming Crim Associate Director for MPS
- Denise Caldwell Physics Division Director
- Brad Keister Deputy Division Director
- Bogdan Mihaila Nuclear Theory Program Director
- Ken Hicks Expt'l Nuclear Physics Program Director
 - Allena Opper Expt'l Nuclear Physics Program Director

Ken plans to return to Ohio University August 2016
Search underway for a "rotator" Program Director in
Experimental Nuclear Physics

http://www.nsf.gov/pubs/2015/phy15001/phy15001.jsp?org=PHY http://www.nsf.gov/careers/rotator/index.jsp

For the latest updates, check out

http://www.nsf.gov/div/index.jsp?div=PHY

Contact us:

- <u>bmihaila@nsf.gov</u>
 or call (703)292-8235
- khicks@nsf.gov or call (703)292-8095
- <u>aopper@nsf.gov</u>
 or call (703)292-8958

